
GEOPHYSICS, VOL. 64, NO. 3 (MAY-JUNE 1999); P. 678–690, 6 FIGS.

Converted-wave reflection seismology
over inhomogeneous, anisotropic media

Leon Thomsen∗

ABSTRACT

Converted-wave processing is more critically depen-
dent on physical assumptions concerning rock velocities
than is pure-mode processing, because not only move-
out but also the offset of the imaged point itself depend
upon the physical parameters of the medium. Hence,
unrealistic assumptions of homogeneity and isotropy are
more critical than for pure-mode propagation, where the
image-point offset is determined geometrically rather
than physically. In layered anisotropic media, an effec-
tive velocity ratio γef f ≡ γ 2

2 /γ0 (where γ0 ≡ V̄p/V̄s is the
ratio of average vertical velocities and γ2 is the corre-
sponding ratio of short-spread moveout velocities) gov-
erns most of the behavior of the conversion-point off-
set. These ratios can be constructed from P-wave and
converted-wave data if an approximate correlation is es-
tablished between corresponding reflection events. Ac-
quisition designs based naively on γ0 instead of γef f can

result in suboptimal data collection. Computer programs
that implement algorithms for isotropic homogeneous
media can be forced to treat layered anisotropic media,
sometimes with good precision, with the simple provi-
sion of γef f as input for a velocity ratio function. How-
ever, simple closed-form expressions permit hyperbolic
and posthyperbolic moveout removal and computation
of conversion-point offset without these restrictive as-
sumptions. In these equations, vertical traveltime is pre-
ferred (over depth) as an independent variable, since the
determination of the depth is imprecise in the presence
of polar anisotropy and may be postponed until later in
the flow. If the subsurface has lateral variability and/or
azimuthal anisotropy, then the converted-wave data are
not invariant under the exchange of source and receiver
positions; hence, a split-spread gather may have asym-
metric moveout. Particularly in 3-D surveys, ignoring this
diodic feature of the converted-wave velocity field may
lead to imaging errors.

INTRODUCTION

The subject of converted waves is receiving new attention,
principally because of the new practicality of multicomponent
ocean-bottom seismology (OBS) and the high data quality of-
ten achieved in that context. However, processing such data
normally relies on classic algorithms such as that of Tessmer
and Behle (1988), which is based on the simple model of an
isotropic homogeneous layer or on naive extensions of it. This
paper extends their work to the minimally realistic case of
many layers, which may or may not be anisotropic, and recasts
important results of Tsvankin and Thomsen (1994) to make
converted-wave processing practicable in realistic situations.
It also discusses some elementary features of converted waves
in laterally inhomogeneous media.

Any elastic wave incident upon any elastic discontinuity gen-
erally converts some of its energy to transmitted and reflected
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waves of other types. If the conversion happens once only
from an incident P-wave to a reflected S-wave, we call this
mode a C-wave. Normally, the determination that an arriv-
ing shear wave has converted at the reflector (C-mode) rather
than at some other horizon is a nontrivial determination, of-
ten requiring a good understanding of the velocity structure
in the overburden. Such mode determination is outside the
scope of this paper, which concerns only the analysis of C-waves
themselves.

In anisotropic media, each such conversion generally reflects
both fast and slow shear waves, whose modes may be termed
fast and slow C-modes. In this work, we concentrate mostly
on flat-lying polar anisotropic (vertical transversely isotropic,
or VTI) layers for which only one C-mode (polarized in-line)
is reflected. However, most results are approximately appli-
cable to data from azimuthally anisotropic media, so long as
the difference between fast and slow shear velocities is much
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smaller than the difference between these and the P-wave ve-
locity; this condition is commonly satisfied.

Many of the principal difficulties in C-wave exploration are
implicit in Figure 1, which shows a thick, uniform isotropic
layer. A ray emitted as a P-wave at angle θp from the surface
source at S reflects from the bottom of the layer as an S-wave
at angle θs and is received at x. The two angles are related by
Snell’s law:

sin θp/Vp = sin θs/Vs = p = ∂tc
∂x
, (1)

where p is the ray parameter (constant along the ray) and tc is
the arrival time of the C-wave at offset x. Note that the offset
xc to the image point at depth in the subsurface (illuminated
by this ray) differs from the midpoint by a distance that de-
pends upon a physical parameter, i.e., the ratio γ = Vp/Vs

in the overburden (Tessmer and Behle, 1988). By contrast, in
pure-mode propagation through this geometry, the offset to
the illuminated point (x/2) is determined geometrically, and
no physical parameter need be determined. This remains true
even if the subsurface is vertically inhomogenous (layered) or
polar anisotropic. This difference causes fundamental differ-
ences in processing strategy and tactics.

Because γ is a physical parameter, its value depends on phys-
ical assumptions, e.g., those of vertical homogeneity and/or
isotropy. Hence, physical properties play a larger role in the
analysis of C-waves, and the inhomogeneity and anisotropy
of the medium are much more crucial than for P-waves. One
cannot form a proper image of the subsurface without careful
consideration of this physical parameter, whereas in pure mode
propagation, physical characterization may follow imaging.

Because γ > 1, the S-wave leg comes up more steeply than
the P-wave leg goes down. Since this C-wave arrival is po-
larized transversely, a horizontally polarized receiver is better
suited for detecting it than a vertically polarized receiver. (In
this isotropic, flat-lying geometry, the energy appears only on
the vertical and in-line horizontal components. More interest-
ing cases are considered in the following.)

We first give a reformulation and discussion of the equations
of Tessmer and Behle (1988) and Tsvankin and Thomsen (1994)
for the isotropic, homogeneous case to establish a base for
understanding more realistic cases.

ARRIVAL TIMES AND VELOCITIES:
HOMOGENEOUS AND ISOTROPIC

Even in the single uniform isotropic layer of Figure 1,
the moveout of the C-wave is not hyperbolic. In this simple
case, the exact traveltime is given (through elementary tri-

FIG. 1. Canonical converted-wave schematic.

gonometry) as

tc(x) = tp(x)+ ts(x) = z

Vp cos θp(x)
+ z

Vs cos θs(x)
,

(2)
where tp is the one-way oblique traveltime through the layer
for the P-wave and ts is the corresponding one-way shear time.
Similarly, the exact emergence offset x is given by

x = Vptp sin θp + Vsts sin θs = pV2
p tp + pV2

s ts. (3)

However, for more complicated cases (to be considered later),
we will need approximations. Here we expand these exact ex-
pressions as a Taylor series in t2 versus x2 (see Tsvankin and
Thomsen, 1994):

t2
c (x) = t2

c0 + x2/V2
c2 + A4x4 + · · · . (4)

Let us consider these terms in order. The two-way C-wave
zero-offset time tc0, which corresponds to vertical travel in this
context, may be written in terms of the one-way pure-mode
times as

tc0 = tp0 + ts0 = tp0(1+ ts0/tp0) = tp0(1+ γ ) (5)

since

γ ≡ Vp/Vs = z/tp0

z/ts0
= ts0/tp0,

with the unknown depth z cancelling out. In the present con-
text, the amplitude of the energy arriving at vertical incidence
is zero (Aki and Richards, 1980), but the time tc0 may still be
found by extrapolating times from obliquely incident arrivals
to zero offset or by examining C-wave stacks. Of course, the de-
termination of tp0 requires separate P-wave data and an inter-
preted correspondence between P-wave and C-wave arrivals.
We assume this is available.

The C-wave short-spread moveout velocity Vc2 in equa-
tion (4) is given (see the Appendix) by

V2
c2 =

V2
p tp0 + V2

s ts0

tp0 + ts0
= V2

p

1+ γ +
V2

s

1+ 1/γ
(6)

{In the simple case of Figure 1, this velocity simplifies to

V2
c2 = VpVs =

√
V2

p2V2
s2 = V2

p2

/
γ. (7)

However, this is not true in the more realistic cases to be
considered shortly, so we do not use it here.}
The quartic moveout parameter A4 of equation (4) was de-

rived by Tsvankin and Thomsen (1994) and is discussed further
in the Appendix. For the single homogeneous isotropic layer
of Figure 1, it is given by

A4 = −(γ − 1)2

4(γ + 1)t2
c0V4

c2

. (8)

This means that, for a typical target at x/z= 1, the quartic term
is−25% of the hyperbolic term if γ = 3 or−8% if γ = 2. It also
means that A4 is not independent of the previously determined
parameters (γ,Vc2) and is not available for fitting, e.g., to flatten
the gathers. (We obtain a free parameter A4 in the following
sections.)

This completes the discussion of the Taylor series expansion
[equation (4)] for the C-wave travel time, except to note that
it is not a very good approximation. In the limit of large x, it
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implies that t2 should be increasing as x4, which is obviously
not reasonable; instead, it should be increasing as x2, but with
the correct velocity coefficient. Tsvankin and Thomsen (1994)
show, in the pure-mode context, how to approximate this be-
havior by modifying the quartic term. Using the same idea here,
equation (4) is replaced by

t2
c (x) = t2

c0 + x2/V2
c2 +

A4x4

1+ A5x2
. (9)

At small-to-moderate offsets x, this expression approxi-
mates equation (4), whereas at large offsets, the 1 in the de-
nominator of the final term becomes negligible so that the x4

dependence becomes an x2 dependence, with a coefficient such
that the last two terms above yield the correct limiting velocity.
The parameter A5 is shown in the Appendix to be

A5 = −A4V2
c2(

1− V2
c2

V2
p2

) . (10)

Hence, A5 does not constitute a new free variable but is fully
determined by the other variables already cited. So at no extra
cost, equation (9) has the correct limiting behavior at both short
and long offsets and varies smoothly in between. Tsvankin
and Thomsen (1994) discuss a similar approximation for pure-
mode P-wave propagation at some length, as do Dellinger et al.
(1993).

CONVERSION POINT OFFSET:
HOMOGENEOUS AND ISOTROPIC

Using elementary trigonometry in the simple case of Fig-
ure 1, it is easy to see that the source-receiver offset xc of the
C-wave conversion point is given by

xc = Vptp sin θp = pV2
p tp. (11)

Hence, as a fraction of the total offset [equation (3)], the con-
version point is (exactly)

xc

x
= 1

1+ V2
s ts
/(

V2
p tp
) = 1

1+ ts(x)
γ 2tp(x)

. (12)

Since both the oblique one-way times tp and ts are complicated
functions of x, this relation is much more complicated than it
looks. However, in the asymptotic limit of vertical travel (i.e.,
of small values of offset divided by thickness x/z), the ratio of
traveltimes becomes

ts(x)/tp(x) → ts0/tp0 = Vp/Vs = γ
so that, in this limit, the asymptotic conversion point (ACP) is
(Tessmer and Behle, 1988)

xc0 = xγ

1+ γ . (13)

For larger offsets (or shallower depths), Tessmer and Behle
(1988) express equation (12) explicitly as[

xc(x − xc)
z

]2

+
[(

x2
c −

(2γ 2)
(γ 2 − 1)

x(xc − x/2)
)]
= 0.

(14)

In this arrangement, the limiting behaviors of the curve at both
limits (x/z → ∞ and x/z → 0) are obvious from the separate
solutions which follow directly from the neglect of one term or
the other.

Tessmer and Behle (1988) also derive the exact solution of
this equation; it is shown in Figure 2 for the special case of
γ = 2. Here their exact solution is shown (solid) as well as
some schematic raypaths, converting at various points (xc, z).
The vertical dotted line is, of course, the midpoint, where all of
these rays would reflect if they did not convert but remained
P-waves throughout.

The vertical dashed line is the ACP xc0, [equation (13)]. It is
clear from the figure that the actual conversion points at finite
x/z differ significantly from this, especially at and shallower
than x/z= 1, where most exploration interest lies. (In the past,
we generally defined our maximum offsets to be close to the
target depth, although longer offsets are becoming routine as
we search for amplitude versus offset leverage.) The figure also
contains an approximate curve and a Taylor curve, discussed
below.

Looking at the same calculation from a different point of
view, we can regard the solution of equation (14) as a function
of x/z, this time with z fixed (i.e., we concentrate on a single
event) and x varying from 0 to xmax. In fact, it is common, for ve-
locity determination purposes, to bin together traces with this
range of offsets, all with a common value of the ACP xc0. In

FIG. 2. Conversion-point offset as a function of reflector depth,
with source-receiver offset fixed, i.e., for a single trace; γ = 2.0.
The solution to equation (17) is noted by the dot-dashed curve.
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such a common asymptotic conversion point (CACP) gather,
the actual reflection points are smeared between this point xc0

and the actual values for xc(x). Figure 3 shows the resulting
displacement of the actual conversion points from the asymp-
totic point, xc − xc0, and Figure 4 shows the corresponding
raypaths.

How large is this offset from the asymptotic conversion point
xc0 in actual meters? In a modern marine survey, the maximum
offset x may be on the order of 4 km, with the target at a similar
depth (xmax/z= 1). In recent clastic sediments, γ may be close
to 3. Using these numbers in equation (14), we find that the

FIG.3. Offset of the actual conversion point from its asymptotic
limit as a function of source-receiver offset for a single event,
i.e., within a CACP gather; γ = 2.0.

FIG. 4. Schematic raypaths for a single reflection event within a CACP gather.

smear, xc − xc0, reaches 187 m for the receivers at the end of
the spread. This means that if we were to regard that arrival as
imaging the conversion point at xc0 instead of at xc, we would
misplace that energy by many bins. This is not a negligible
smear, in most cases.

If the acquisition is split spread (as is easy to achieve on land
or at sea with an OBS survey) with the same maximum offset
in each direction, the smear is just twice that calculated above,
distributed symmetrically about the CACP. Further, since in
this context the normal-incidence reflectivity is zero (Aki and
Richards, 1980), the traces at the distal ends of this smeared
region have the greatest amplitudes.

Hence, an acceptable procedure for computing stacked
traces must honor the depth-dependent conversion point
xc(x/z), e.g., through the calculation of common conversion-
point stacks (see below). To think about the differences from
asymptotic behavior, it is useful to have an analytic solution
to equation (14) that reveals some of the physics so we do
not have to recompute opaque formulae for every case. In
any case, we will need approximations for more realistic (mul-
tilayered, anisotropic) cases for which no exact solution is
available.

In the Appendix, a Taylor expansion of the solution to equa-
tion (14) is derived, which is valid for small but finite values of
x/z:

xc(x, z) ≈ x
[
C0 + C2(x/z)2] , (15)

where the coefficients are given by

C0 = γ

1+ γ . . .homogeneous, isotropic (16)

[see equation (14)] and

C2(γ ) = γ

2
(γ − 1)
(γ + 1)3

. . .homogeneous, isotropic.

(17)
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This Taylor approximation solution is shown in Figure 2; it
appears to be accurate for values of x/z as large as 1/0.8 but
deviates strongly at larger offsets or shallower depths.

Hence, in the Appendix, a better approximate solution is
also derived:

xc(x, z) ≈ x

[
C0 + C2

(x/z)2

(1+ C3(x/z)2)

]
, (18)

with

C3 = C2/(1− C0). (19)

Equation (19) has the same properties as equation (9): it is
asymptotically correct at both limits (x/z → 0 and x/z → ∞)
and varies smoothly in between. In Figure 2, this approximation
is plotted as a dashed curve and is seen to be numerically accu-
rate to values of x/zas large as 1/0.3. Rays reflecting from deep
targets of exploration interest with these wide angles will not
appear in most data sets, so these are acceptable errors. There
is no strong advantage to this approximation (aside from the
intuitive insight which it offers) in the simple case of Figure 1
(for which the exact solution of Tessmer and Behle, 1988, is
available), but it will be quite useful in the more realistic cases
discussed below.

MANY LAYERS

With the foregoing review and discussion of the essential
features of the isotropic homogeneous case, we are now ready
to consider more realistic cases. In a context of multiple layers,
we must distinguish between the vertical velocity ratio function

γ0 ≡ V̄p/V̄s = ts0/tp0, (20)

where the bar indicates the average velocities, e.g., V̄p(z) =
z/tp0(z), and the moveout velocity ratio function

γ2 ≡ Vp2/Vs2, (21)

where Vp2 is the short-spread (rms) P-wave moveout velocity
and Vs2 is the S-wave equivalent.

The moveout equation in this case is equation (9), with both
parameters Vc2 and A4 selected by flattening procedures, as
described (in the P-wave context) by Tsvankin and Thomsen
(1994). Equation (5) for the C-wave vertical traveltime tc0 gen-
eralizes to

tc0 = tp0 + ts0 = tp0(1+ γ0). (22)

The C-wave moveout velocity, equation (6), generalizes at ev-
ery vertical time tc0 to

V2
c2(tc0) = V2

p2

1+ γ0
+ V2

s2

1+ 1/γ0
= V2

p2

1+ γ0

(
1+ 1

γef f

)
,

(23)
where

γef f = γ 2
2

/
γ0. (24)

This is exactly equivalent to the much more complicated-
appearing expression for migration velocity derived by
Harrison and Stewart (1993). It does not reduce to equation
(7), except in special cases of little practical interest.

These various velocity ratios may be found directly from
P-wave and C-wave data once corresponding events have been
identified. This correspondence, subject to some interpreta-
tion, is not usually a problem as regards the major reflectors,
but it may be very difficult on a finer scale. Fortunately, the
grosser scale correspondence is more crucial for velocity de-
termination.

The vertical ratio γ0 is found directly [cf. equation (22)] from
the ratio of corresponding P- and C-vertical times (on stacks
or extrapolated from oblique times on prestack gathers). Of
course, to form a C-wave CACP gather, an initial guess for γef f

is required [see equation (27) below]; hence, some iteration is
normally required.

Then moveout velocity analysis is performed on both
P-wave and C-wave data independently, determining V2

p2 and
V2

c2 at corresponding times. Inverting equation (23)

γef f =
[
(1+ γ0)

(
V2

c2

/
V2

p2

)− 1
]−1
. (25)

The value γ2 may then be found, if necessary, from equa-
tion (24). Given the different definitions of velocity ratio,
clearly the moveout parameter for the C-wave should be
chosen as the velocity Vc2 itself, independent of P-wave data,
rather than as some joint P/S parameter. The various velocity
ratios should then be found subsequently to compute common
conversion-point stacks, although some iteration is usually
necessary.

A further advantage of this strategy is that since the determi-
nation of Vc2 is virtually independent of any P-wave analysis, it
is more robust than if some joint P/S quantity is estimated. In
fact, to do this velocity analysis, one need not even have finally
decided whether the conversion was at the reflector (C-mode),
or pehaps at some other horizon, or have made a detailed cor-
respondence between P-events and C-events.

For the many-layer case, the nonhyperbolic term in equation
(9) is often nonnegligible at moderate offsets; the coefficient
A4 may be derived as an obvious special case of the anisotropic
expression in Tsvankin and Thomsen (1994). However, the ex-
pression they give for A4 need not be evaluated in practice;
rather, A4 may be determined empirically from the data, sim-
ilar to the way Vc2 is found, following the procedures recom-
mended by Tsvankin and Thomsen (1994) for the correspond-
ing P-wave case.

The C-wave conversion point offset, equation (18), gener-
alizes (since the depths z are not known a priori in this more
realistic case) as

xc(x, tc0) ≈ x

c0 + c2

(
x

tc0Vc2

)2

(
1+ c3(x/tc0Vc2)2

)
 , (26)

with

c0 = lim
x→ 0

xc

x
= xc0

x
= γef f

1+ γef f
, (27)

[see equation (16)],

c2 = γef f

2γ0

(γef fγ0 − 1)(1+ γ0)
(1+ γef f )3

, (28)
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and

c3 = c2/(1− c0) (29)

(see the Appendix). The result for the ACP [equation (27)]
appears in Chung and Corrigan (1985) without elaboration [see
also Gaiser (1997)]; here it is seen as the asymptotic limit of
a more general approximation. There, the velocity Vs2, which
is embedded within γef f , is described as the shear rms velocity
(referring in context to the vertical velocity structure); we shall
shortly see that it is, in fact, more general than that.

Example from Valhall

As an example of the use of these equations, let us consider
the Valhall OBS survey reported by Thomsen et al. (1997a).
The ratio of vertical velocities inferred using equation (22) was
γ0 = 2.9, and the ratio of moveout velocities inferred from
equations (24) and (25) was γ2 = 2.4, yielding a value of γef f =
2.0. By naively ignoring possible effects of multiple layering
and anisotropy (see below), the ACP would be calculated from
the ratio of vertical traveltimes γ0 to be at

xc0

x
= γ0

1+ γ0
= 0.74.

By naively using the moveout velocity ratio γ2, it would be at
xc0

x
= γ2

1+ γ2
= 0.70.

However, we properly calculate, using the effective ratio γef f

for the conversion point [equations (25), (27)],
xc0

x
= γef f

1+ γef f
= 0.66.

This is a significant difference from the naive approxima-
tions, amounting to several hundred meters at the furthest off-
sets. As we learn below, the differences between these various
measures of velocity ratio, as seen in the Valhall data, may
involve polar anisotropy as well as layering.

ACQUISITION

Especially in 3-D C-wave acquisition, consideration of the
ACP is important to adequately define the full-fold, well-
imaged area and to minimize the acquisition footprint. Of
course, the ACP calculated from equation (27) using γef f

should be used for this computation. To compute γef f , C-wave
moveout must be observed [equation (25)], so an initial 2-D
C-wave survey may be necessary to plan properly for a 3-D
survey.

If log or vertical seismic profiling (VSP) information is used
to determine γ0, and this is used in place of γef f to compute the
ACP, significant shortcomings in resultant data quality may be
expected because the full-fold area and the acquisition foot-
print depend upon the ACP through γef f , not γ0.

Further, it is not generally adequate to compute γef f by com-
puting the C-wave moveout velocity from log or VSP data by
calculating rms velocity values and then constructing V2

s2 and
V2

c2 functions. The reason is that polar anisotropy also gener-
ally contributes to these moveout velocities; we will see that
the formulae above are valid as written, even if the data con-
tain the effects of polar anisotropy. These anisotropic effects
are not, however, included in the vertical or near-vertical data

from logs and VSPs, so the computation of V2
c2 from such input

data can be expected to be imprecise.
Since the scalar reciprocity theorem is not valid for this vec-

tor data, 3-D acquisition and processing schemes that rely on
this oversimplification may be in serious error. See below for
a fuller discussion of the vector reciprocity theorem, which is,
of course, valid.

TIME-DOMAIN STACKING

In a CACP gather, the actual conversion points xc(x, tc0)
are smeared along a subsurface interval, as shown in Figure
4, according to source-receiver offset and the depth to the re-
flector. The higher amplitudes are normally concentrated near
the end of this smear (or near both ends if the gather is split
spread) because the normal-incidence conversion coefficient is
zero and grows with increasing angle (Aki and Richards, 1980).
This smear may be acceptable for determining the velocity pa-
rameters (depending on the lateral variation of velocity), but
it is clearly unacceptable for imaging. In fact, Figure 4 shows
that the shallower reflection events should actually image away
from the CACP at significantly greater source-receiver offsets.
Hence, a smeared, inaccurate image would result if a time-
flattened CACP gather were to be simply added together at
every time, as with P-waves.

Tessmer and Behle (1988) recommend a depth-variable re-
binning procedure whereby at each particular flattened time
tc0 the amplitude from each particular source-receiver offset
x in the CACP is added to an address (in computer memory,
corresponding to that same time and the true conversion-point
offset). This address accumulates a stacked trace—positioned
not at that CACP but at the true conversion point, calculated
as the solution to equation (14). Of course, this procedure is
subject to the assumptions of isotropy and vertical homogene-
ity implicit in that equation. Since the computation amounts
to more than simple addition but actually moves energy about
laterally, it is actually an approximate migration operation (see
below).

A corresponding procedure, based on equation (26), is easy
to implement and is far more general in its applicability. Given
a flattened CACP gather, at each particular time tc0, the ampli-
tude from each particular source-receiver offset x is added to
an address that accumulates a stacked trace—positioned not
at the CACP but at the true conversion point, offset from the
CACP (in the direction of the receiver) by the amount

1xc(x, tc0) ≈
xc2

(
x

tc0Vc2

)2

(
1+ c3(x/tc0Vc2)2

) . (30)

In general, this computed conversion point lies between the
discrete positions where stacks are to be calculated, so inter-
polation to those discrete points is necessary with different
weights for each offset and each time, according to the dis-
tance to the two nearest discrete points. We see below that this
procedure is valid even where the layers are anisotropic.

TIME-TO-DEPTH CONVERSION

The preceding formulae are given in terms of time rather
than depth, since the arrival times are directly measurable
whereas the depths must be inferred, usually with the help of an



684 Leon Thomsen

assumption of isotropy. Time processing may be accomplished
independent of such assumptions, so it is best to avoid them
until they are needed. Eventually, of course, the conversion of
time to depth must be made.

It seems obvious that depth determination should be done
with P-waves instead of C-waves, but this may not be possible
in practice, in some cases. To use C-waves to convert times to
depths, we can follow the Dix procedure to transform stacking
velocities to interval velocities in coarse layers and then add
up the delays through each such layer, assuming the layers are
isotropic.

We apply Dix differentiation to the C-wave hyperbolic
moveout parameter [equation (9)], finding the (rms) average
C-wave velocity between two coarsely spaced reflectors (la-
belled i and i − 1):

V2
ci ≡

tc0i V2
c2(tc0i )− tc0i−1V2

c2(tc0i−1)
tc0i − tc0i−1

. (31)

As noted by Al-Chalabi (1974), this represents an rms aver-
age throughout the coarse interval rather than an arithmetric
average. In the limit of very short waves, we would require the
arithmetric average for t–zconversion; but since seismic waves
do not typically meet this requirement anyway, we ignore these
distinctions. It is shown in the Appendix that this leads to

Vci = Vpi√
γ0i

(32)

[compare with equation (7)]. Then, since the thickness of this
isotropic layer is

1zi = Vpi1tp0i = Vpi1tc0i /(1+ γ0i ),

equation (32) yields

1zi = Vci1tc0i

√
γ0i

1+ γ0i
. (33)

This provides the basis, through repeated application, for find-
ing the total depth. In particular, one could use a C-wave ve-
locity function in a conventional P-wave time-to-depth conver-
sion routine to do this, after first stretching the C-wave velocity
function by the time-variable factor given above. Of course, if
the layers are anisotropic, new considerations arise.

LATERAL INHOMOGENEITY: DIODIC VELOCITIES

The preceding arguments have been limited, strictly speak-
ing, to the case of lateral uniformity of velocity and struc-
ture, although (as with P-waves) modest and smooth lateral
inhomogeneities are handled well. However, with C-waves in
laterally inhomogeneous media, an additional feature arises
because of the asymmetric raypath, and this deserves special
mention here. In such media, C-wave arrival times and veloc-
ities are not invariant under an interchange of source and re-
ceiver positions, notwithstanding the apparent violation of the
reciprocity theorem. We call this phenomenon diodic velocity,
a term recalling the electronic diode, which operates differently
in forward and reverse.

To make the argument simple and clear, consider Figure 5,
wherein the layer is uniform except for a zone of anomalously
slow P-velocity. The C-wave traveling from A to B in the figure
arrives sooner than the C-wave traveling from B to A, since
only the latter traverses the slow zone as a P-wave. The arrival

time and effective velocity of the C-wave is not invariant under
an exchange of source and receiver position if the source retains
its vector character, and likewise for the receiver. The argument
obviously remains valid for any general lateral inhomogeneity
in velocity, including dipping reflectors.

This means a split-spread gather of traces showing C-wave
arrivals through laterally heterogeneous media will not have
symmetric moveout. If the sources are shot on the groups, then
the sources (receivers) with positive offsets have the same po-
sitions as the receivers (sources) with negative offsets. One
side of a split-spread common midpoint (CMP) gather has its
source and receiver positions exactly exchanged (with respect
to the other). Since the C-wave arrivals are diodic, the moveout
will not be the same for the two sides, in general. Of course,
this does not happen for P-waves or for any other pure-mode
event.

The asymmetry appears also for split spreads shot between
the groups, although some interpolation is required to con-
front the reciprocity theorem. The asymmetry also appears for
a common conversion-point gather, although there is not an
apparent violation of the reciprocity theorem.

Of course, the reciprocity theorem is not violated; it is valid
for all elastic media, homogeneous or not, isotropic or not, with
any mode(s) of propagation (see Knopoff and Gangi, 1959;
Claerbout and Dellinger, 1987). However, it must be applied
properly in vector fashion. It says that, given a source (body
force per unit mass) f(A) applied at A with a resultant displace-
ment at B given by u(A;B) and a vector force f(B) applied at
B with resultant displacement at A given by u(B;A), the scalar
products obey

f(A) · u(A;B) = f(B) · u(B;A). (34)

In other words, the vector projection of the recorded signal
upon the source direction at one point is identical to the same
projection at the other point.

We may decompose (at each location) the recorded data
vector into two components, which we label as source-parallel
and source-perpendicular. The vector reciprocity theorem re-
quires that the source-parallel components of data be identi-
cal; it does not constrain the source-perpendicular components
in any way. For the situation in Figure 5, the data lie chiefly
in this source-perpendicular direction and are largely uncon-
strained. The same is true in most OBS C-wave situations,
where the velocity gradient in the near surface bends the rays
nearly vertically and the recorded data components are nearly
horizontal.

FIG. 5. Diodic velocity occurs for C-waves whenever there is
lateral variation in velocity.
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If, instead, the source f(B) were excited exactly parallel
to u(B;A) (i.e., nearly horizontally), then the recorded data
u(A;B) would lie nearly parallel to f(A) and the component
exactly parallel to f(A) would exactly equal u(B;A). This
arrangement of the source f(B) amounts to sending the wave
back the way it arrived along the reverse path (S-P), which of
course is not a C-wave (by definition) and is hard to accomplish
in practice.

A close approximation to the situation of Figure 5 is seen in
the Valhall OBS survey (Thomsen et al., 1997a). Figure 6 shows
a velocity spectrum and a split-spread CMP supergather from
that survey, zoomed on the reservoir level and corresponding
to a CMP location to one side of the Valhall gas cloud (slow
P-zone). The near-offset traces are in the center of the gather;
wide negative and positive far offsets are on either side. The
velocity spectrum is clearly bimodal, with well-separated sem-
blance maxima at times corresponding to the reservoir peaks.
The velocity pick shown (the fast pick) has flattened the nega-
tive offsets, but the positive offsets are undercorrected. Alter-
natively, a pick of the slow velocity flattens the positive offsets
and overcorrects the negatives. Far away from the gas cloud,
the effect diminishes, then disappears. A similar effect, but with
reverse polarity, occurs on the other side of the gas cloud. In
this instance, the fact that the OBS receiver is 64 m deeper
than the air gun source is irrelevant to the discussion. A CACP
gather shows the same assymetry.

In cases where the velocity heterogeneity is less pronounced,
the bimodal semblance maxima smear together and appear as
one poorly resolved peak. Even then, the velocity resolution
and consequent image quality may be substantially increased
by explicitly recognizing the diodic nature inherent to C-wave
velocity.

FIG. 6. An asymmetric split-spread CMP supergather (inline horizontal component) from Valhall at the target level, showing diodic
velocity character. A velocity spectrum is shown on the left; the supergather is on the right.

One consequence of the phenomena of diodic velocity is
that, in laterally inhomogeneous media, neither the nonhyper-
bolic moveout equation (9) nor its hyperbolic restriction (with
A4 = 0) is strictly valid. The reason is that interchanging source
and receiver positions amounts to reversing the sign of the off-
set x in the equation. But since the equation is even in x, the
sign of x is immaterial to the result, so this theory cannot ac-
count for data showing diodic velocity (it was, after all, derived
for the case of lateral homogeneity).

In 2-D surveys, there are trivial ways to sidestep this prob-
lem. For example, a simple procedure is to process each one-
sided gather independently and to join the images at a place of
convenience (Thomsen et al., 1997a). In such a case, the cor-
rect positioning of the conversion points (using the procedure
outlined above) is crucial to obtain a proper join.

However, in 3-D surveys the problem is far from trivial, is
not addressed in the literature, and requires a true vector solu-
tion. If a CACP-binned gather from a 3-D survey is sorted by
source-receiver unsigned offset (radius), this would correspond
to folding together the two sides of Figure 6. An inexperienced
processor might completely misinterpret the bimodal velocity
spectrum, not realizing the physical reason for the two peaks.
If the semblance peaks are overlapping, then this is especially
likely. In both cases, inaccurate imaging would probably result.

CONVERTED-WAVE AVO

Analysis of converted-wave amplitudes and their variation
with offset (C-AVO) involves all of the considerations, famil-
iar in P-wave AVO studies, required to convert received am-
plitudes into true relative amplitudes that provide reflectivity
as a function of incident angle. These true relative amplitudes
must then be converted into half-space reflection coefficients



686 Leon Thomsen

(free of thin-bed interference effects), which can then be the
subject of physical interpretation. All of these considerations
lie outside the scope of the present work but are generally
analogous to the corresponding considerations in P-AVO.

However, a new consideration peculiar to C-AVO studies
must be addressed even before a set of traces is ready for
the procedures mentioned above. One must first construct a
true common conversion-point (CCP) gather, unstacked (as
opposed to a CACP gather), so all amplitudes of a given event
refer to conversion at a single point in space without the smear
shown in Figure 4. The time domain stacking procedure men-
tioned above of course destroys all C-AVO effects in accumu-
lating the stacked CCP trace.

However, a simple modification to those procedures pre-
serves the necessary information. Consider that the flattened
CACP gathers at all CACP positions xc0, with offsets x and flat-
tened times tc0, have amplitudes s(xc0, x, tc0). We wish to con-
struct flattened CCP gathers, each with a common conversion
point xc for all events (all times tc0) and all offsets, s(xc0, x, tc0).
We can do that by mapping the array s(xc, x, tc0) into a new ar-
ray s(xc, x, tc0); the mapping function is given by equation (26)
or, equivalently, equation (30). It is exactly the time domain
stacking procedure, except that the CCP amplitudes are not
added together; instead, the C-AVO behavior is preserved for
analysis.

The exact reflection coefficient for C-waves at a planar
boundary is discussed by Aki and Richards (1980) for the
isotropic case. In their linearized form (small elastic contrasts),
these equations assume a form analogous to the linearized
P-wave reflectivity with three notable features.

1) The angular dependence is odd (rather than even) in inci-
dent angle θ so that interchanging source and receiver po-
sitions in the flat-lying geometry of Figure 1 reverses the
algebraic sign of the received amplitude. This is related
to the discussion of diodic velocities. In 2-D split-spread
surveys, the trivial remedy is to reverse the polarity of
one-half of each split-spread gather and proceed. How-
ever, in wide-azimuth surveys a true vector solution is
required.

2) Because of the foregoing, the essential parameters in
C-AVO analysis are the slope and curvature of the C-
AVO function, rather than the intercept and slope, as in
P-AVO analysis.

3) The coefficents in the linearized expressions depend upon
the jumps in density and shear velocity only and not upon
the jump in P-velocity. This means that the well-known
nonlinear dependence of P-wave reflectivity upon gas
(or other light hydrocarbon) in the pore space near the
reflector does not enter into the quantitative analysis
of C-AVO. This in turn means that such data, perhaps
jointly with P-AVO, may in principle be quantitatively
analyzed for gas saturation, thereby offering a solution
to the “fizz-gas” problem.

ANISOTROPIC CONSIDERATIONS: POLAR ANISOTROPY

Since all of these results depend upon γ , and since γ depends
strongly on direction in an anisotropic medium, it is clear that
we need to consider this case explicitly. From Tsvankin and
Thomsen (1994), we deduce that, since c0 and c2 depend only
on the short-spread moveout parameters tc0 and Vc2, we can

use equations (20–30) as written, so long as we recognize that
the measured moveout velocities Vp2 and Vs2 are those affected
by both the layering and the anisotropy [equations (A-3) and
(A-4)]. This is trivial since the data have these effects in them
already.

Note: Francis Muir independently derived the result, equa-
tion (27), for c0 for a homogeneous anisotropic layer several
years ago (personal communication) and presented it to the
Stanford Exploration Project sponsors but never formally pub-
lished it.

The seismic parameters defined above lead to the correct
displacement of the conversion point, even if the differences
between γ0 and γ2 arise from anisotropy as well as many
layers. The separate contributions attributed to layering and
anisotropy may be estimated using the detailed formulae for
Vc2 given by Tsvankin and Thomsen (1994), although this is not
necessary for time processing.

As a simple special case, if the difference between γ0 and γ2 is
ascribed completely to anisotropic effects (neglecting layering
effects), we can directly estimate the anisotropy parameters
δ and σ (see the Appendix). The anisotropic parameter δ is
given by the difference between vertical and moveout P-wave
velocities (Tsvankin and Thomsen, 1994). Hence, if we know
the vertical P-wave traveltime and the depth (i.e., from bore-
hole information), we calculate Vp0 and, hence, δ. Then the
anisotropic parameter σ is given from

γef f = γ 2
2

γ0
= γ0

(1+ 2δ)
(1+ 2σ )

.

Since σ is often greater than δ, it follows that γef f is often less
than γ0 in cases where the difference is caused by anisotropy.
This has the effect of moving the image point closer to the
source than for an isotropic medium with the velocity ratio γ0.
This is consistent with the modeling work of Eaton (1993).

If the C-wave hyperbolic moveout coefficients Vc2 are af-
fected by polar anisotropy, then the interval C-wave velocity,
produced by the Dix differentiation [equation (31)], is (see the
Appendix)

V2
ci = V2

pi

(
1+ 1/γci

1+ γ0i

)
, (35)

where

γci = γ0i
(1+ 2δi )
(1+ 2σi )

. (36)

This reduces, of course, to equation (32) if the layer anisotropies
δi and σi are zero. Then the layer thickness [equation (32)]
becomes

1zi = Vci1t0i [(1+ γ0i )(1+ 1/γci )(1+ 2δi )]−1/2. (37)

The use of this equation to calculate thicknesses and, by repeti-
tion, depths is obviously more problematic than in the isotropic
case [equation (33)]. In principle, one could apply the stretch
factor given above to velocities of a C-wave velocity function,
but this does not answer the question of determining the values
of the anisotropy parameters.

USE OF ISOTROPIC COMPUTER CODES

The previous results raise the question of whether it is pos-
sible to use code written with the assumption of isotropy to
process data from an anisotropic medium. Of course, we do
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this all of the time with P-wave data; the anisotropy is hid-
den within the moveout velocity and manifests itself first as
time-to-depth mis-ties. If we avoid long spreads with nonhy-
perbolic moveout and confine our AVO analysis to qualitative
techniques, this approach works quite nicely.

In the C-wave context, we also have the consideration of the
conversion point. It is clear from equation (27) that the asymp-
totic conversion point xc0 will be calculated properly by such
an isotropic program if we tell it that the velocity ratio function
is given numerically by γef f . (This assumes the program does
not find its own velocity ratio internally.)

However, it is also clear from equation (28) that the de-
parture of the actual conversion point from the ACP involves
other quantities. Let us write the coefficient c2, which con-
trols this departure, for an isotropic medium with velocity ratio
γ = γef f = γ0:

ciso
2 (γef f ) = (γef f − 1)

2(γef f + 1)
. (38)

Then the actual coefficient [equation (28)] suitable for the
many-layered, anisotropic context may be rewritten as

c2 = ciso
2 (γef f )

[
γef f

γ0

(γef fγ0 − 1)(γ0 + 1)(
γ 2

ef f − 1
)
(γef f + 1)

]
. (39)

With this equation, one may make an informed judgment about
the degree of approximation involved in setting the factor in
brackets to unity in any particular case. In most cases, this will
likely prove to be an acceptable approximation. Where it is ac-
ceptable, this makes a substantial simplification to processing,
for then one can use an isotropic code simply by supplying it
with the proper value of the γef f (z) function. Where this ap-
proximation is unacceptable, isotropic codes will lead to errors.

Alternatively, an isotropic program may calculate the con-
version point using an adaptation of Tessmer and Behle’s
(1988) equation in terms of x/z, using P-wave times to de-
termine the depths. To analyze this situation, we use equation
(18), which shows the depth explicitly, with C0 given by equa-
tion (28), C3 given by equation (19), and

C2 =
γ 2

ef f

2γ0

(γef fγ0 − 1)
(1+ γef f )4

(Vp)2

V2
p2

. (40)

The isotropic coefficient in this case is [equation (17)]

Ciso
2 (γef f ) = γef f

2
(γef f − 1)
(γef f + 1)3

, (41)

in terms of which the actual coefficient may be written

C2 = Ciso
2 (γef f )

[(
γef f

γ0

(γef fγ0 − 1)(
γ 2

ef f − 1
) ) (Vp)2

V2
p2

]
. (42)

For this situation, equation (42) may be used to estimate
whether such an isotropic program offers sufficient accuracy in
any particular case. If the quantity in brackets is close to one,
then the subsurface may be analyzed in this quasi-isotropic way,
utilizing γef f (z) in an isotropic code. Where this approximation
is not acceptable, isotropic codes will lead to errors.

MIGRATION, DMO

Of course, the stacking procedures discussed herein are
loaded with approximations and may be supposed to be inher-
ently inferior to migration procedures. However, migration has
its own approximations, and these may prove to be even more
troublesome. In particular, it is quite clear from the foregoing
simple analysis that whenever polar anisotropy is present, a
valid migration should include those effects. It is common for
shear-wave anisotropy to be greater than P-wave anisotropy
(i.e.,σ is greater than δ), so the net effect on C-waves may be ex-
pected to be greater than we commonly experience in P-wave
exploration. In particular, the requirement for true depth de-
termination (for joint P/C-wave interpretation) is made much
more difficult when anisotropy prevents true depth determina-
tion for either the P-waves or the C-waves.

In such cases, approximate time-based processing may be
more appropriate. The simple formulae derived herein yield
important insights that are often precluded by more exact for-
mulations. However, the time-migration operator for layered,
polar-anisotropic media may be derived following principles
similar to those used here [equation (9)]. In fact, the func-
tion xc(tc0, x) from equation (26) may be viewed as an ap-
proximation to the zero-aperture (zero-dip) time-migration
operator.

For purposes of partial migration or dip moveout (DMO),
a solution (for the isotropic homogeneous case of Figure 1) is
given by Alfaraj (1993), using a modification of Hales’ (1984)
f -k method. It utilizes a reflection time-variant phase shift ap-
plied to NMO-corrected data to track the movement of the con-
version point xc, as shown (for the flat-lying case) in Figure 2.
This method may also be generalized to deal with anisotropic,
layered media following the principles described herein.

ANISOTROPIC CONSIDERATIONS:
AZIMUTHAL ANISOTROPY

Most rocks are azimuthally anisotropic to some degree. This
means the converted shear waves are not polarized in the verti-
cal plane (so-called SV-waves) as commonly assumed. Instead,
they are split into two S-waves, polarized in two directions.
These two directions are determined by the material and the
ray direction, rather than by the source (the source polariza-
tion only determines the relative excitation of the two natural
polarizations). The two polarizations travel at slightly different
velocities, so they split in their arrival times. In general, both
are registered on both in-line and cross-line receivers.

Since the two shear velocities are usually very close to each
other (usually within ∼2%), we can still use most of the fore-
going analysis of moveout and conversion points. However,
we usually need further analysis to cope with the split ar-
rivals, since each reflector generally gives rise to at least two
arrivals, and these will confuse the interpretation unless cor-
rected for. [A second source of confusion may arise if two
shear arrivals are generated because of wave-surface concavity
in polar-anisotropic media (Ohlsen and MacBeth, 1996). Be-
cause of the steeply dipping shear leg in a C-mode (Figure 1),
this phenomenon is not likely to present itself in this context.]

The primary analysis of such shear-wave splitting is given in
Thomsen (1988) and references cited therein and so is not re-
peated here. In applying that material to the present case, one
need only recall that an obliquely traveling P-wave excites
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the reflected shear wave with an in-line excitation, which is
discussed explicitly there. The reflection angle θs [equation (1)]
is smaller than in the corresponding shear case because of the
displacement of the conversion point from the midpoint. Fur-
ther, the obliquely traveling shear wave coming up bends more
vertically (than shown in the figure) as it reaches the surface
(from Snell’s law and the general decrease of velocities with de-
creasing depth). Hence, the vertical propagation analysis given
in Thomsen (1988) is probably an adequate approximation—
even more adequate than for propagation.

On the other hand, particularly if the C-wave data is from an
OBS survey, there may be valid questions concerning the equal-
ity of sensitivity of the various vector components, i.e., concern-
ing vector fidelity. We wish to treat the various components as
parts of a vector—for example, by rotating them vectorwise.
This obviously requires that the instrument response in both
amplitude and phase, including coupling effects, is the same for
all components. Land geophones have had sufficient develop-
mental history so we are relatively comfortable with conclud-
ing that these component responses are equivalent. The same
is not currently true of OBS receivers. So in considering the
algorithms discussed below, we should remember that they as-
sume the data is a true vector and the various components may
be manipulated as such—an assumption that should be viewed
in practice with scepticism (Thomsen et al., 1997b).

In land shear-wave exploration, it is common to use both
in-line and cross-line sources, recording into both in-line and
cross-line receivers, yielding a 2 × 2 tensor of data (Thomsen,
1988). In the 2-D C-wave problem, we have only a two-vector
of data, so we cannot perform tensor (Alford) rotation but
must use vector rotation, as described conceptually in Thomsen
(1988).

Harrison (1992) implements these ideas by incorporating
several additional assumptions not present in Thomsen (1988):

1) The slow-shear wavelet is identical to the fast-shear
wavelet in amplitude (Harrison, 1992). This assumption
is not fulfilled in the general case since the effective shear-
modulus contrast (across the reflecting horizon) is differ-
ent for each polarization.

2) The slow-shear wavelet is identical to the fast-shear
wavelet in phase (Harrison, 1992). This assumption is not
fulfilled in the general case since the attenuation for the
fast mode may be different than for the slow mode, al-
though we often find them comparable in field data.

3) The pure-mode autocorrelation can be estimated from
the total autocorrelation function of the data (Harrison,
1992, p. 32).

For 3-D C-wave surveys, new possibilities arise. If we con-
sider, as a transition to three dimensions, the case of orthog-
onally crossing 2-D C-wave lines, we see that at the tie point,
i.e., at the common conversion point on each line correspond-
ing to the intersection point, we have Alford’s problem: two
orthogonal polarizations of sources with two orthogonal re-
ceivers recording each. Hence, we can apply tensor rotation to
this four-part data set; it should prove much more robust than
the vector rotation described above.

In wide-azimuth 3-D surveys, it is common to have in ev-
ery common conversion-point bin a collection of traces with a
wide variety of offsets and azimuths. It is common to project the
horizontal components from each shot onto its source-receiver

azimuth and to handle the resulting calculated radial data as
scalar data by forming CACP-binned gathers of such traces.
However, this procedure is suggested by the assumption of az-
imuthal isotropy; normally it is only necessary to observe the
significant coherent energy present on the calculated trans-
verse components to realize that this assumption is invalid and
that a more realistic approach is required.

From this collection of traces with many offsets and azimuths,
one can use a least-squares (or other statistical) procedure to
deduce the azimuth of orientation of the principal coordinate
system onto which this redundant data can best be projected,
yielding an Alford-type interpretation of the anisotropy. One
approach to doing this, subject to assumptions about the dis-
tribution of source-receiver azimuths and offsets, is given by
Garotta and Granger (1988); another is given by Gaiser (1997).
Such a procedure, or one more elaborate, appears to be neces-
sary in most cases.

Most of the discussion of shear-wave splitting in the litera-
ture assumes uniform (with depth) orientation of the principal
directions of azimuthal anisotropy. In cases where the orienta-
tion varies with depth, the formalism established by Thomsen
et al. (1999) may be useful.

CONCLUSIONS

An essential part of the analysis of any converted-wave data
set is determining where the conversion occurs; this paper deals
only with conversion (P→S) at the reflector.

Because the image point offset of such C-waves must be
calculated on physical grounds rather than on geometrical
grounds (even in the simplest geometry), the role of physi-
cal properties in C-wave processing is much more pronounced
than in P-wave processing. Hence, simple physical character-
ization such as isotropy or spatial homogeneity can impede
C-wave imaging, whereas for P-waves it can often be post-
poned to follow the imaging. In fact, C-wave acquisition, pro-
cessing, and interpretation should proceed together for great-
est effectiveness.

Simple, data-driven approximate formulae enable (1) the
calculation of the C-wave image point in the minimally re-
alistic case of vertical inhomogeneity (layering), and polar
anisotropy, and (2) the computation of time-domain stacks and
unstacked common conversion-point gathers using the true
(time-dependent) conversion point. The computation of the
conversion-point offset is best done in terms of time rather
than depth since the depths are imprecise in the presence of
anisotropy. At Valhall (Thomsen et al., 1997a), the differences
between this computation and a naive computation using the
assumption of isotropic homogeneity and the vertical velocity
ratio are significant for imaging precisely enough for efficient
exploitation of the reservoir. The use of these formulae is im-
portant even in the acquisition planning stage to properly illu-
minate the area to be imaged and to avoid serious acquisition
footprints.

C-wave velocities are inherently diodic, that is, they depend
upon the direction of the source→ receiver vector and are
not invariant under exchange of source and receiver positions
if the media are laterally inhomogenous and/or azimuthally
anisotropic—i.e., if the survey is performed in the real world.
This does not violate the vector reciprocity theorem. It does
complicate velocity analysis, particularly in 3-D surveys, where
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a sort of gathered traces from a CACP bin, if ordered by
unsigned radius only, ignores this fundamental feature.

The use of computer codes based on isotropic algorithms
can often be successful if they are deceived in appropriate
ways, given herein. The errors consequent to such deception
may be estimated by evaluating the anisotropic correction
factors given above. The anisotropic correction factors may
be derived from the data itself.

Since most sedimentary rocks are azimuthally anisotropic,
the upcoming S-leg of the C-wave will usually be split into
(at least) two events per reflector, polarized in the princi-
pal directions preferred by the medium (not determined by
the source). It is usually important to separate the data, as
recorded, into different components that each contain one
event per reflector (either fast or slow). This requires de-
termining of the principal directions. In 2-D surveys, the
two horizontal components constitute a sufficient, albeit
marginal, 2× 1 data set for determination of these principal
directions. In wide-azimuth 3-D surveys, one can construct
a more robust algorithm via a statistical approximation to
Alford’s orthogonal-source-excitation 2 × 2 matrix.
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APPENDIX

DERIVATIONS

Moveout: anisotropic layers

We first consider the various coefficients in the Taylor series
[equation (4)]. The moveout velocity V2

c2 is given by the meth-
ods of Tsvankin and Thomsen (1994) as equaton (23). Note that
the distinction between ray angle and wavefront angle may be
neglected in this context of near-offset derivatives.

If the layers are anisotropic, the short-spread moveout ve-
locities are affected by the anisotropy. In each layer

V2
p2 = V2

p0(1+ 2δ) (A-1)

and

V2
s2 = V2

s0(1+ 2σ ), (A-2)

where Vp0 and Vs0 are the vertical velocities and δ and σ are two
independent anisotropic parameters discussed by Tsvankin
and Thomsen (1994). If there are many anisotropic layers, then
the velocities V2

p0 and V2
s0 should be understood as rms vertical

velocities and the anisotropy parameters δ and σ are also rms

averages, as discussed more fully by Tsvankin and Thomsen
(1994).

The quartic parameter A4 of equation (4) is given by
Tsvankin and Thomsen (1994) in the single-layer case as

A4 = −1
(1+ γef f )2

[
2η

(
γ 2

0 − 1
)

γ0
γ 2

ef f+
(
γ 2

2 − 1
)2

4(γ0 + 1)

]/
V2

c2t2
c0,

(A-3)
whereη is another anisotropic parameter defined by Alkhalifah
and Tsvankin (1995) in terms of elementary anisotropy param-
eters by

η = (ε − δ)
(1+ 2δ)

. (A-4)

As discussed by Tsvankin and Thomsen (1994) and Alkhalifah
and Tsvankin (1995), η is determined in principle by nonhy-
perbolic P-wave moveout or by high-angle reflections from
dipping reflectors, such as normal faults. For the multilayered
anisotropic case, Tsvankin and Thomsen (1994) give A4 as a
combination of layer properties too gruesome to repeat here.
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As discussed in the main text, the Taylor expansion [equa-
tion (4)] has the wrong asymptotic behavior; the refinement
suggested by Tsvankin and Thomsen (1994) in the pure-mode
context is more useful. Here we derive the refinement parame-
ter A5, which appears in equations (9) and (10). As is apparent
from Figure 2, at large relative offsets x/z the converson-point
offset xc approaches the emergence offset x, so that the P-
wave travels down nearly horizontally and the S-wave travels
up nearly vertically. Thus, at large offsets, the time-offset rela-
tion should approach

(t(x)− ts0)2 = t2(1− ts0/t)2 = constant+ x2/V2
ph,

(A-5)
where Vph is the horizontal P-velocity. If we linearize t2 in the
small quantity ts0/t , we find that even the linear term becomes
negligible in comparison to the x2 term at large offsets. Setting
this expression equal to equation (9) at large offsets results in

t2(x) → t2
0 + x2/V2

c2+
A4x2

A5
≈ constant+ x2/V2

ph

(A-6)
so that

A5 = A4(
1

V2
ph

− 1
V2

c2

) . (A-7)

In the single-anisotropic-layer case, this becomes

A5 = −A4V2
c2(

1− V2
c2

V2
p2(1+ 2η)

) . (A-8)

If η is small, this reduces to equation (10), which may often
be used more generally than the derivation implies, e.g., in the
multilayer context, just as was done for P-waves by Alkhalifah
and Tsvankin (1995).

Conversion-point offset

To carry out the Taylor series [equation (15)], we use the
methods of Tsvankin and Thomsen (1994). Of course, the
normal-incidence term C0 yields the asymptotic conversion

point [equation (16)], whereas the slope term is given by

C2 = lim
x/z→0

[
d

d(x/z)2
(xc/x)

]
= lim

x/z→0

[(
dp2

d(x/z)2

)
d

dp2
(xc/x)

]
(A-9)

= lim
x/z→0

[
p

x/z2

(
dp

dx

)
d

dp2
(xc/x)

]
. (A-10)

From equation (3),

lim
x/z→0

x

p

(
dx

dp

)
= lim

x/z→0

x

p

(
x

p
+ p

d

dp

(
V2

p tp + V2
s ts
))

= (V2
p tp0 + V2

s ts0
)2
. (A-11)

From equation (12),

lim
x/z→0

d

dp2
(xc/x) = c2

0

2

(
ts0

tp0

)(
V2

s

V2
p

) (
V2

p − V2
s

)
(A-12)

Combining equations (A-9)–(A-12) yields equation (15) of the
main text for the Taylor series coefficient. Then the approxima-
tion in equation (18) may be used to extend the accuracy of the
expression all the way to infinite values of x/z. Since the deriva-
tion never simplifies velocity terms with time terms, we can gen-
eralize to the many-layered, polar-anisotropic case by replac-
ing V2

p → V2
p2, etc. The corresponding expression in (x/tc0Vc2),

given in equation (26), is obtained from the foregoing by using
the scale factor z/tc0 = (V̄ p/Vp)[(1+ 1/γef f )(1+ γ0)]−1/2.

Time-to-depth conversion

Given the definition of the interval C-wave velocity in equa-
tion (31), we carry out the differences indicated and find that

V2
ci =

V2
pi1t0pi + V2

si1t0si

1tc0i
(A-13)

= V2
pi

1+ γ0i
+ V2

si

1+ 1/γ0i
. (A-14)

If one neglects any rapid spatial variation of velocity within
the interval between the reflectors, this interval is just a ho-
mogeneous layer, and the difference between rms and arith-
metric average interval velocities is also neglected. If this layer
is isotropic, then equation (A-14) simplifies to equation (32).
If it is anisotropic, it simplifies to equation (35).


