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Weak elastic anisotropy 

Leon Thomsen* 

ABSTRACT 

Most bulk elastic media are weakly anisotropic. -The 
equations governing weak anisotropy are much simpler 
than those governing strong anisotropy, and they are 
much easier to grasp intuitively. These equations indi- 
cate that a certain anisotropic parameter (denoted 6) 
controls most anisotropic phenomena of importance in 
exploration geophysics. some of which are nonnegligible 
even when the anisotropy is weak. The critical parame- 
ter 6 is an awkward combination of elastic parameters, 
a combination which is totally independent of horizon- 
tal velocity and which may be either positive or nega- 
tive in natural contexts. 

INTRODUCTION 

In most applications of elasticity theory to problems in pe- 
troleum geophysics, the elastic medium is assumed to be iso- 
tropic. On the other hand, most crustal rocks are found exper- 
imentally to be anisotropic. Further, it is known that if a 
layered sequence of different media (isotropic or not) is probed 
with an elastic wave of wavelength much longer than the typi- 
cal layer thickness (i.e., the normal seismic exploration con- 
text). the wave propagates as though it were in a homoge- 
neous, but anisotropic, medium (Backus, 1962). Hence, there is 
a fundamental inconsistency between practice on the one hand 
and reality on the other. 

Two major reasons for the continued existence of this in- 
consistency come readily to mind: 

(1) The most commonly occurring type of anisotropy 
(transverse isotropy) masquerades as isotropy in near- 
vertical reflection profiling, with the angular dependence 
disguised in the uncertainty of the depth to each reflec- 
tor (cf., Krey and Helbig, 1956). 

(2) The mathematical equations for anisotropic wave 
propagation are algebraically daunting, even for this 
simple case. 

The purpose of this paper is to point out that in most cases of 
interest to geophysicists the anisotropy is weak (l&20 per- 
cent). allowing the equations to simplify considerably. In fact, 
the equations become so simple that certain basic conclusions 

are immediately obvious : 

(I) The most common measure of anisotropy (con- 
trasting vertical and horizontal velocities) is not very 
relevant to problems of near-vertical P-wave propaga- 
tion. 

(2) The most critical measure of anisotropy (denoted 
6) does not involve the horizontal velocity at all in its 
definition and is often undetermined by experimental 
programs intended to measure anisotropy of rock sam- 
ples. 

(3) A common approximation used to simplify the 
anisotropic wave-velocity equations (elliptical ani- 
sotropy) is usually inappropriate and misleading for P- 
and SV-waves. 

(4) Use of Poisson’s ratio, as determined from vertical 
P and S velocities, to estimate horizontal stress usually 
leads to significant error. 

These conclusions apply irrespective of the physical cause of 
the anisotropy. Specifically, anisotropy in sedimentary rock 
sequences may be caused by preferred orientation of aniso- 
tropic mineral grains (such as in a massive shale formation), 
preferred orientation of the shapes of isotropic minerals (such 
as flat-lying platelets), preferred orientation of cracks (such as 
parallel cracks, or vertical cracks with no preferred azimuth), 
or thin bedding of isotropic or anisotropic layers. The con- 
clusions stated here may be applied to rocks with any or all of 
these physical attributes, with the sole restriction that the re- 
sulting anisotropy is “weak” (this condition is given precise 
meaning below). 

To establish these conclusions, some elementary facts about 
anisotropy are reviewed in the next section. This is followed 
by a presentation of the simplified angular dependence of 
wave velocities appropriate for weak anisotropy. In the fo]- 
lowing section. the anisotropic parameters thus identified are 
used to analyze several common problems in petroleum geo- 
physics. Finally, further discussion and conclusions are pre- 
sented. 

REVIEW OF ELASTIC ANISOTROPY 
A linearly elastic material is defined as one in which each 

component of stress oij is linearly dependent upon every com- 
ponent of strain &Irl (Nye, 1957). Since each directional index 
may assume values of 1, 2, 3 (representing directions X, JJ, z), 
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there are nine such relations, each involving one component of 
stress and nine components of strain. These nine equations 
may be written compactly as 

where the 3 x 3 x 3 x 3 elastic modulus tensor Cijkr com- 
pletely characterizes the elasticity of the medium. Because of 
the symmetry of stress (oij = ojJ, only six of these equations 
are independent. Because of the symmetry of strain (ckl = E&, 
only six of the terms on the right side of each set of equations 
(I) are independent. 

Hence, without loss of generality, the elasticity may be rep- 
resented more compactly with a change of indices, following 
the Voigt recipe: 

ij or k/ : 11 22 33 32=23 31=13 12=21 

1 1 111 1 1 1 , (2) 
a P I 2 3 4 5 6 

so that the 3 x 3 x 3 x 3 tensor Cipp may be represented by 
the 6 x 6 matrix C,,. Each symmetry class has its own pat- 
tern of nonzero, independent components C,,. For example, 
for isotropic media the matrix assumes the simple form 

where the three-direction (2) is taken as the unique axis. It is 
significant that the generalization from isotropy to anisotropy 
introduces three new elastic moduli, rather than just one or 
two. (If the physical cause of the anisotropy is known, e.g., 
thin layering of certain isotropic media, these five moduli may 
not be independent after all. However, since the physical cause 
is rarely determined, the general treatment is followed here.) A 
comparison of the isotropic matrix, equation (3), w-ith the an- 
isotropic matrix, equation (5), shows how the former is a de- 
generate special case of the latter. with 

C 11-t c,, (64 

c hh ’ C‘M 

‘i 

isotropy. (6b) 

( 13- (‘3, - 2C,, (6~) 

The elastic modulus matrix C,, in equation (5) may be used to 
reconstruct the tensor Cljkl using equation (2), so that the 
constitutivc relation in equation (1) is known for the aniso- 
tropic medium. 

The relation may be used in the equation of motion (e.g., 
Dairy and Hron. 1977; Keith and Crampin, 1977a, b, c), yield- 
ing a wave equation. There are three independent solutions-- 

c,, = 

L 

-c,, (C,? - X4,) (C,~_ 2.x,,) 

c 33 (c.33 - 2C‘w) 
C 33 

I isotropy. (3) 
c44 

I 
_ _ 

C 44 

c 44 

Only the nonzero components in the upper triangle are 
shown: the lower triangle is symmetrical. These components 
are related to the Lame parameters J. and u and to the bulk 
modulus K by 

and (4) 

C,, = u. 

The simplest anisotropic case of broad geophysical applica- 
bility has one distinct direction (usually, but not always, verti- 
cal), while the other two directions are equivalent to each 
other. This case- called transverse isotropy, or hexagonal 
symmetry -is the only one considered explicitly here (al- 
though the present approach is useful for any symmetry). 
Hence, subsequent use of the term “anisotropy” refers only to 
this particular case. 

The elastic modulus matrix has five independent compo- 
nents among twelve nonzero components, giving the elastic 
modulus matrix the form 

C,,, = 

one quasi-longitudinal, one transverse, and one quasi- 
transverse for each direction of propagation. The three are 
@ariLed in mutually orthogonal directions. The exactly 
transverse wave has a polarization vector with no component 
in the three-direction. It is denoted by SH: the other vector is 
denoted by Sk’. Daley and Hron (1977) give a clear derivation 
of the directional dependence ofthe three phase velocities: 

CA.3 + c,, + (C, , ~ C,,) sin’ 0 -t O(0) 1 ; (7a) 

c,, + c,, + (C ,, - C,,) sin’ 0 - O(Q) 
I 

; (7b) 

and 

pr<,,(O) = C,, sin’ 0 + C,, cos’ H, (7c) 

where p is density and phase angle B is the angle between the 
waverront normal and the unique (vertical) axis (Figure 1). 

-Cl, (Cl, - 2C,,) Cl3 
Cl, c 13 

c 33 

C 44 

C 44 
C bh I transverse isotropy, (5) 
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Phase (Wavefront) Angle 0 
and Group (Ray) Angle 4 

wave vector Z ’ I 

FIG. 1. This figure graphically indicates the definitions of 
phase (wavefront) angle and group (ray) angle. 

D(O) is compact notation for the quadratic combination: 

D(H) = c,, - c&J2 
i 

+ C44)2-(C33-C44)(C11 +Cc,,-2C,,) sin2 B 

(C,,+c‘,,-7(‘,,)2~4(C,3+C44)2 

(7d) 

(note misprint in the corresponding expression in Daley and 
Hron, 1977). It is the algebraic complexity of D which is a 
primary obstacle to use of anisotropic models in analyzing 
seismic exploration data. 

It is useful to recast equations (7aH7d) (involving five elas- 
tic moduli) using notation involving only two elastic moduli 
(or equivalently, vertical P- and S-wave velocities) plus three 
measures of anisotropy. These three “anisotropies” should be 
appropriate combinations of elastic moduli which (1) simplify 
equations (7); (2) are nondimensional, so that one may speak 
of X percent P anisotropy, etc.; and (3) reduce to zero in the 
degenerate case of isotropy, as indicated by relations (6), so 
that materials with small values (+ 1) of “anisotropy” may be 
denoted “weakly anisotropic.” 

Some suitable combinations are suggcstcd by the form of 
equations (7): 

Cl36 - c44 
?’ ?C : - 44 

and 

3- 

(W 

2C44) 
1 

(W 

The utility of the factors of two in definitions (8aW8d) will be 
evident shortly. The definition of equation (8~) is not unique, 
and it may be justified only as in the case considered next, 
where it leads eventually to simplification. The vertical sound 
speeds for P - and S-waves are, respectively. 

and 

C-W 

Then, equations (7) become (exactly)’ 

1 + c sin’ 0 + D*(8) 1 ; (lOa)* 

3 
c,&(O) = pi [ 1 + $ E sin’ 0 - 5 o*(O) I ; 

0 0 
(lob)* 

a:,(H)=P~[1+Zrsin’e]. 

with 

4(1 - @;/Cl:, + E)E 

+ (1 - Pb4)2 (lOd)* 

Before considering the case of weak anisotropy, it is impor- 
tant to clarify the distinction between the phase angle 0 and 
the ray angle C$ (along which energy propagates). Referring to 
Figure 1, the wavefront is locally perpendicular to the propa- 
gation vector k. since k points in the direction of maximum 
rate of increase in phase. The phase velocity r(0) is also called 
the wavefront velocity, since it measures the velocity of ad- 
vance of the wavefront along k(B). Since the wavefront is non- 
spherical, it is clear that 0 (also called the wavefront-normal 
angle) is different from 4, the ray angle from the source point 
to the wavefront. Following Berryman (1979), these relation- 
ships may be stated (for each wave type) in terms of the wave 
vector 

k = k,% + k,i, (ll)* 

where the components are clearly 

k, = k(0) sin 0; (I la)* 

k, = k(B) cos 0; (1 lb)* 

and 

k,=O; 

and the scalar length is 

k(B) = jm = w/v(e), (I lc)* 

where w is angular frequency. The ray velocity V is then given 

‘This and other expressions below which are marked with an asterisk 
are valid for arbitrary (not just weak) anisotropy. 
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by 

(la* 

where the partial derivatives are taken with the other compo- 
nent of k held constant. Because of the similarity in form 
between equation (12) and the usual expression for group ve- 
locity in a dispersive medium, V is also called the group veloc- 
ity and G$ is the group angle. From Figure 1, 4 is given by 

(13a)* 

Berryman (1979) also shows that the scalar magnitude V of 
the group velocity is given in terms of the phase velocity 
magnitude 1’ by 

(14)* 

At 8 = 0 degrees and 0 = 90 degrees, the second term in equa- 
tion (14) vanishes. so that for these extreme angles (vertical 
and horizontal propagation, respectively), group velocity 
equals phase velocity. 

WEAK ANISOTROPY 

All the results of the previous section are exact, given equa- 
tions (1) and (5). However, the algebraic complexity of equa- 
tions (IO) impedes a clear understanding of their physical con- 
tent. Progress may bc made. however, by observing that most 
rocks are only weakly anisotropic. even though many of their 
constituent minerals are highly anisotropic. 

Table I presents data on anisotropy for a number of sedi- 
mentary rocks. The original data consist (in the laboratory 
cases) of ultrasonic velocity measurements or (in the field 
cases) of seismic-band velocity measurements. These data were 
interpreted by the original investigators in terms of the five 
elastic moduli of transverse isotropy. In Table 1, these moduli 
are recast in terms of the vertical velocities IX,,, and PO, and 
the three anisotropies E, 15*, and y defined above. Also, a 
fourth measure of anisotropy (6, defined below as a more 
useful alternative to 6*) is shown. As seen in the table, these 
quantities provide an immediate estimate of the three types of 
anisotropy that are unavailable by simple inspection of the 
moduli themselves. Table I confirms that most of these rocks 
have anisotropy in the weak-to-moderate range (i.e., ~0.2). as 
expected. The table also shows data for some common crys- 
talline minerals (which in some cases are strongly anisotropic) 

and for some layered composites. 
The listing of measurements of sedimentary rock anisotropy 

in Table I from the literature is nearly exhaustive. However, 
perhaps twice as many partial studies of anisotropy (mea- 
suring vertical and horizontal P and S velocities) have ap- 
peared. It is clear that the requisite five parameters may not be 

obtained from four measurements (at least one measurement 
at an oblique angle, preferably 45 degrees, is required). As is 
shown below, this omitted datum is the most important one 
for most applications in petroleum geophysics. Hence, these 
partial studies are omitted from Table 1. 

In addition to intrinsic anisotropy, one must consider ex- 
trinsic anisotropy, for example, due to fine layering of iso- 
tropic beds. Many examples could be listed, but it is not clear 
how to pick representative examples. This table has been lim- 
ited to the particular examples defined by Levin (1979) (these 
choices are discussed further below). 

With Table I as justification of the approximation of weak 
anisotropy. it now makes sense to expand equations (10) in a 
Taylor series in the small parameters E. 6*, and y at fixed 0. 
Retaining only terms linear in these small parameters, the 
quadratic D* is approximately 

sin’ 0 co? 0 + E sin4 0. (15) 

Substituting this expression into equations (1Oa) and (lob) and 
further linearizing yields a final set of phase velocities that is 
valid for weak anisotropy: 

L;~ (6) = a, (1 + 6 sin’ 8 co? 0 + E sin4 O), (16a) 

v,,(B) = PO I d 1 + -5 (E - 6) sin’ 6 cos2 0 00 1 , WW 
and 

cSH (9) = PO (I + y sin’ 0). (16~) 

Equations (16) display the required simplicity of form. They 
have been arranged so that, for small angles 8, each successive 
term contributes to the total by successively smaller orders of 
magnitude. This relation leads to replacement of the (initially 
defined) anisotropy parameter 6* in equation (8~) by 

(Cl, + G.J2 - cc,, - cd = 
2C,,(C,, - C,,) 

(17)$ 

The parameter 6* is not required further. 
From Table 1, note that all three anisotropies E, 6, and y are 

usually of the same order of magnitude. Because of this, it is 
clear from equation (16a) that at small angles 0 where 
sin’ cos’ is not nearly as small as sin4, the second term (in F) is 
not nearly as small as the last term (in E). It is in this regime 
(small 0) where most reflection profiling takes place. Hence 
this 6 term will dominate most anisotropic effects in this con- 
text, unless E $ 6 in some particular case. 

The trigonometric factor cos’ 0 in the second term of equa- 
tion (16a) rather than (1 - sin’ 0) appears by design. This 
factor ensures that the angular dependence of t?,(e), at near- 
horizontal propagation, is clearly dominated by E (since 
cos n,‘2 = O), just as the near-vertical propagation is domi- 
nated by 6. In fact. at horizontal incidence, 

U,(K/2) = Cl,(l + E). (184 

Since a0 is the vertical P velocity, it is now abundantly clear 
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Table 1. Measured anisotropy in sedimentary rocks. This table compiles and condenses virtually all published data on 
anisotropy of sedimentary rocks, plus some related materials. 

Sample Conditions 

Taylor’ 
sandstone 

Mesaverde (4903j2 
mudshale :nD 

= 27.58 MPa 
, undrnd 

Mesaverde (4912j2 
immature sandstone 1% 

= 27.58 MPa 
, undrnd 

Mesaverde (494612 
immature sandstone kE6 

= 27.58 MPa 
, undrnd 

Mesaverde (5469.5)’ 
silty limestone kt; 

= 27.58 MPa 
, undrnd 

Mesaverde (5481.3)’ 
immature sandstone 1% 

= 27.58 MPa 
, undrnd 

Mesaverde (5501)’ 
clayshale LB 

= 27.58 MPa 
, undrnd 

Mesaverde (5555.5)’ 
immature sandstone k 

= 21.58 MPa 
, undrnd 

Mesaverde (5566.3j2 
laminated siltstone L&6 

= 27.58 MPa 
, undrnd 

Mesaverde (5837.5)’ 
immature sandstone P&E 

= 27.58 MPa 
, undrnd 

Mesaverde (5858.6)’ 
clayshale 

= 27.58 MPa 12 448 6 804 0.189 
, undrnd 3 794 2 074 

Mesaverde (6423.6)’ 
calcareous sandstone ~cE~,=u~~~~~ Mpa 

Mesaverde (6455.1)’ P 
s% 

= 27.58 MPa 
immature sandstone , undrnd 

Mesaverde (6542.6)’ P 
sEEi 

= 27.58 MPa 
immature sandstone , undrnd 

Mesaverde (6563.7)’ P 
S%i 

= 27.58 MPa 
mudshale , undrnd 

Hesaverde (7888.4j2 P 
&d 

= 27.58 MP~ 
sands tone , undrnd 

Mesaverde (7939.5)’ P 
s,eD 

= 27.58 MPa 
mudshale , undrnd 

v (f/s) 
‘(m/s) 

v (f/s) E 
‘(m/s) 

11 050 6 000 0.110 
3 368 1 a29 

14 860 8869 0.034 
4 529 2 703 

14 684 9 232 0.097 
4 476 2 814 

13 449 7 696 0.077 
4 099 2 346 

16 312 9 512 0.056 
4 972 2 899 

14 270 
4 349 

a 434 0.091 
2 571 

12 887 6 742 0.334 
3 928 2 055 

14 891 8 877 0.060 
4 539 2 706 

14 596 8 482 0.091 
4 449 2 585 

15 327 9 294 0.023 
4 672 2 833 

17 914 10 560 0.000 
5 460 3 219 

14 496 a 487 0.053 
4 418 2 587 

14 451 8 339 0.080 
4 405 2 542 

16 644 9 a37 0.010 
5 073 2 998 

15 973 9 549 0.033 
4 869 2 911 

14 096 8 106 0.081 
4 296 2 471 

6 Y p(g/cm3> 

-0.127 -0.035 0.255 2.500 

0.250 0.211 0.046 2.520 

0.051 

-0.039 

-0.041 

0.134 

0.818 

0.147 

0.688 

-0.013 

0.154 

-0.345 

0.173 

-0.057 

0.009 

0.030 

0.118 

0.091 0.051 2.500 

0.010 0.066 2.450 

-0.003 0.067 2.630 

0.148 0.105 2.460 

0.730 0.575 2.590 

0.143 0.045 2.480 

0.565 0.046 2.570 

0.002 0.013 2.470 

0.204 0.175 2.560 

-0.264 -0.007 2.690 

0.158 

-0.003 

0.012 

0.040 

0.129 

0.133 2.450 

0.093 2.510 

-0.005 2.680 

-0.019 2.500 

0.048 2.660 

‘Rai and Frisillo, 1982 
‘Kelley, 1983 (number in parentheses is depth label) 
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Table I. Continued 

1959 

Sample 

Mesaverde 
shale (350j3 

P 

d:;f 

= 20.00 MPa 11 100 8000 0.065 

3 383 2 438 

Mesaverde 
sandstone (1582j3 

P 
d:;f 

= 20.00 MPa 12 100 
3 688 

9 100 0.081 
2 774 

Mesaverde 

shale (1599j3 

P 

df;f 
= 20.00 MPa 12 800 8 800 0.137 

3 901 2 682 

Mesaverde 

sandstone (1958)’ 

P 

d:Ff 
= 50.00 MPa 13 900 9 900 0.036 

4 237 3 018 

Mesaverde 
shale (1968)” 

P 
d:Ff 

= 50.00 MPa 15 900 10400 0.063 
4 846 3 170 

Mesaverde 
sandstone (3512)” 

P 

d;if 

= 50.00 MPa 15 200 10600 -0.026 

4 633 3 231 

Mesaverde 
shale (3511)” 

P 
d$f 

= 50.00 MPa 14 300 10 000 0.172 

4 359 3 048 

Mesaverde 
sandstone (3805)" 

P 
d:cf 

= 20.00 MPa 13 000 9 600 0.055 
3 962 2 926 

Mesaverde 
shale (3883)" 

P 
d:;f 

= 50.00 MPa 12 300 8 600 0.128 

3 749 2 621 

Dog Creek4 in situ, 6 150 2 710 0.225 
shale 2 = 143.3 m (430 ft) 1 875 826 

Wills Point” in situ, 3 470 1270 0.215 

shale 2 = 58.3 m (175 ft) 1 058 387 

Cotton Valley’ 
shale 

= 111.70 MPa 15 490 9480 0.135 

, undrnd 4 721 2 890 

Pierre” in situ, 6 804 2 850 0.110 

shale z = 450 m 2 074 869 

Conditions 

in situ, 6 910 2 910 0.195 

z = 650 m 2 106 807 

in situ, 7 224 3 180 0.015 

2 = 950 m 2 202 969 

P = 3~, :o 300 

sitd, undrnd 3 048 

v (f/s) 

‘(m/s> 

v (f/s) t: 

‘(m/s 1 

13 550 7 810 0.085 

4 130 2 380 

fj” Y p(g/cm”) 

-0.003 0.059 0.071 2.35 

0.010 0.057 0.000 2.73 

-0.078 -0.012 0.026 2.64 

-0.037 -0.039 0.030 2.69 

-0.031 0.008 0.028 2.69 

-0.004 -0.033 0.035 2.71 

-0.088 0.000 0.157 2.81 

-0.066 -0.089 0.041 2.87 

-0.025 0.078 0.100 2.92 

-0.020 0.100 0.345 2 .ooo 

0.359 0.315 0.280 1.800 

0.104 0.120 0.185 2.640 

0.172 0.205 0.180 2.640 

0.058 0.090 0.165 2.25? 

0.128 0.175 0.300 

0.030 

0.480 

2.25? 

0.085 

-0.2~70 

0.060 2.25? 

-0.050 2.420 

“Lin, 1985 (number in parentheses is depth label) 

4Robertson and Corrigan, 1983 

“Tosaya, 1982 
GWhite, et al., 1982 

7Jones and Wang, 1981 (depth of core shown) 
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Table 1. Continued 

1960 

Sample 

Oil Shale* 

Green River9 
shale 

Berea'c 
sandstone 

Bandera'o 
sandstone 

Green River" P = 202.71 MPa, 10 800 5 800 0.195 
shale a?r dry 3 292 1768 

Lance" P = 202.71 Mpa, 16 500 9800 -0.005 
sandstone a?r dry 5 029 2 987 

Ft. Union" P = 202.71 Mpa, 16 000 9650 0.045 
siltstone a?r dry 4 877 2 941 

Timber Mtn" P = 202.71 Mpa, 15 900 6090 0.020 
tuff afr dry 4 846 1856 

Muscovite" 
crystal 

Quartz crystall 
(hexag. approx.) 

Calcite crystal'2 
(hexag. approx.) 

Biotite crystall 

Apatite crystal" 

Ice I crystal" 

Aluminum-lucite':j clamped; oil 9 410 4430 0.97 
composite between layers 2 868 1350 

Conditions v (f/s) 
'(m/s) 

P = 101.36 MPa 11080 
s&d, undrnd 3377 

unknown 13880 
4231 

p 0, = 13670 
s&d, undrnd 4167 

P = 68.95 MPa, 14450 
s&d, undrnd 4404 

;gEsr;ti;.95 Mpa, 12;;; 

;sEir;t8i.95 Mpa, 12 500 
3 810 

P =o c 

P 
eff = 

0 

P 
eff 

= 0 

P 
eff = 

0 

P 
eff 

=0 

P. =o, 
eff 

4OF 

7 770 0.030 
2 368 

14 500 6860 1.12 
4420 2091 

20000 14700 -0.096 
6 096 4481 

17 500 11000 0.369 
5 334 3 353 

13 300 
4 054 

4400 1.222 
1341 

20 800 14400 0.097 
6 340 4 389 

11900 5 500 -0.038 
3627 1676 

v (f/s) 6 
'(m/s) 

4890 0.200 
1490 

8330 0.200 
2 539 

7 980 0.040 
2 432 

8470 0.025 
2 582 

8 740 0.002 
2 664 

-0.282 

0.000 

-0.013 

0.056 

0.023 

0.037 

-0.45 

-0.032 

-0.071 -0.045 0.040 2.600 

-0.003 -0.030 0.105 2.330 

-1.23 -0.235 2.28 2.79 

0.169 0.273 ,0.159 2.65 

0.127 0.579 0.169 2.71 

-1.437 -0.388 6.12 3.05 

0.257 0.586 3.218 

-0.10 -0.164 

0.079 

0.031 

1.30 

1.064 

-0.89 -0.09 1.86 

6 

-0.075 

0.100 

0.010 

0.055 

0.020 

0.045 

-0.220 

-0.015 

‘d p(glcm3) 

0.510 2.420 

0.145 2.370 

0.030 2.310 

0.020 2.310 

0.005 2.140 

0.030 2.160 

0.180 2.075 

0.005 2.430 

'Kaarsberg, 1968 
'Podio et al., 1968 

"King, 1964 
"Schock et al., 1974 
'*Simmons and Wang, 1971 
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Table 1. Continued 

P(g/cm3) Sample Conditions 6” 

-- 

-0.010 

v (f/s) 
p(m/s) 

v (f/s) 
S(m/s) 

“Sandstone- hypothetical 9 871 5 426 
shaleIll 50-50 3 009 1 654 

r. 

0.013 

6 

-0.001 

Y 

__- 

0.035 2.34 

0.059 -0.042 -0.001 0.163 2.34 

0.134 -0.094 0.000 0.156 2.44 

0.169 -0.123 0.000 0.271 2.44 

0.103 -0.073 

-0.002 

-1.075 

-0.001 0.345 2.34 

0.022 0.018 0.004 2.03 

1.161 -0.140 2.781 2.35 

“SS-anisotropic hypothetical 9 871 5 426 
shale”“’ 50-50 3 009 1 654 

“Limestone- hypothetical 10 845 5 968 
shale”‘” 50-50 3 306 1819 

“LS-anisotropic hypothetical 10 845 5 968 
shale”’ 4 50-50 3 306 1819 

“Ani sot ropic hypothetical 9 005 4 949 
shale”‘” 50-50 2 745 1 508 

“Gas sand- hypothetical 4 624 2 560 
water sand”14 50-50 1 409 780 

“Gypsum-weathered hypothetical 6 270 2 609 
material”“’ 50-50 1911 795 

‘“Dalke, 1983 
14Levin, 1979 

cusps or triplications are present in the limit of weak ani- 
sotropy. (The term I’,,, in these figures is discussed in the 
next section.) 

At this point, where the linearization procedure has identi- 
tied F as the crucial anisotropic parameter for near-vertical 
f-wave propagation, it is appropriate to discuss a special case 
of transvcrsc isotropy which has received much attention: el- 
liptical anisotropy. An elliptically anisotropic medium is 
characterized by elliptical P wavefronts emanating from a 
point source. It is defined (cf.. Daley and Hron, 1979) by the 
condition 

6=c elliptical anisotropy. 

Notable for its algebraic simplicity. this special case, is, of 
course. detincd by a mathetnatical restriction of the parame- 
ters which has no physical justification. Accordingly, one may 
cxpcct the occurrence of such a cast in nature to be van- 
ishingly r;lrc_ Ins fact,~ Table 1~ shows !hat 6 and_ c are not even 
well-correlated (being frequently of opposite sign), so that the 
assumption of their equality may lead to serious error. This 
point is rcinforccd by Figure 4, which plots 6 versus c for the 
rocks of Table I and shows for comparison the elliptic con- 
dition dcftncd above. The inadequacy of the elliptic assump- 
tion is immediately obvious. 

These results are for intrinsic anisotropy. Berryman (1979) 
and Helbig (1979) show that if anisotropy is caused by tine 
layering of isotropic materials, then strictly 

8<:E isotropic layers. 

that 

L’ (x/Z) - a 
E= p 

0 
(IW 

a0 

is. in fact, the fractional difference between vertical and hori- 
zontal P velocities. i.e., it is the parameter usually referred to 
as “the” anisotropy of a rock. [Without the factor of 2 in 
equation @a), E would not correspond to this common usage 
of the term “anisotropy.“] 

However, the parameter 6 which controls the near-vertical 
anisotropy is a different combination of elastic moduli, which 
does not include C,, (i.e., the horizontal velocity) at all. Since 
the E term is negligible for near-vertical propagation. most of 
one’s intuitive understanding of E is irrelevant to such prob- 
lems. For example, it is normally true that horizontal P veloci- 
ty is greater than vertical P velocity, i.e., E > 0 (Table 1). How- 
ever, this is of little use in understanding anisotropy in near- 
vertical reflection problems, because E is multiplied by sin4 8 
in equation (16a). The near-vertical anisotropic response is 
dominated by the 6 term, and few can claim myth intuitive 
familiarity with this combination of parameters [equation 
(17)]. In fact, Table 1 shows a substantial fraction of cases 
with negative 6. 

Figures 2 and 3 show P wavefronts radiating from a point 
source into two uniform half-spaces, each with positive E but 
dilTerent values of 6. one positive and one negative. These are 
just plots of I/,($) in polar coordinates. It is clear from the 
figures that quite complicated wavefronts may occur. Similar 
complications arise with SL’ wavefronts. although no actual 
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WAVEFRONTS 
__._~~~._~~~ 

I 

6 = 0.20 
- “NM0 

FIG. 2. This figure indicates an elliptical wavefront (6 = E). The 
curve marked V,,, is a segment of the wavefront that would 
be inferred from isotropic moveout analysis of reflected 
energy. VkMo > V,,,, 

WAVEFRONTS 

ANISOTROPIC: 

E = 0.20 

FIG. 3. This figure indicates a plausible anisotropic wavefront 
(6 = -E). The curve marked VNNMo is a segment of the wave- 
front that would be inferred from isotropic moveout analysis 
of reflected energy. V,,, < V>_, since 6 < 0. 

As a final remark. note that. for small 0 the last term in 
equation (16a). E sin’ 0. might be comparable to a neglected 
quadratic term in 6’ sin” 0, or 6c sin’ 8. However, all neglect- 
ed terms quadratic in anisotropy are multiplied by trigono- 
metric terms of order sin“ 0 co? 0 or smaller. and hence are in 
fact negligible, even for small 0. 

Rerryman (1979) writes a perturbation approximation to 
equation (10) in which the small parameter is a combination 
of anisotropic parameters and trigonometric functions. His 
derivation, which is also vfalid for strong anisotropy at small 
angles. reduces to the present equations (16a) and (16b) for 
weak anisotropy (at any angle). His approximation is less re- 
strictive than the present one, but it yields formulas which are 
less simple (and which do not readily disclose the crucial role 
of the parameter 6, or contrast it with c). It is therefore an 
approximation intermediate between the exact expressions 
(IO) and the intuitively accessible approximation (16). 

Backus (1965) treats the case of weak anisotropy of arbi- 
trary symmetry, detining anisotropy difterently than is done 
here, MGthout imple,menting criteria ( !) and (2) which follows 
equation (7d). 

Consttleration of the linearized SV result equation (16b) 
immediately confirms the well-known special result that ellip- 
tical P wavefronts (6 = c) imply spherical SV wav,efronts (no 0 
dependence). However, equation (Ibb) shows that the more 
general case of weakly anisotropic but nonelliptical media is 
still algebraically tractable. 

For completeness, note from equation (16~) that 

l’s11 (71/2) - Bo 
Y= 

so ’ 

so that y corresponds to the conventional meaning of “SH 
anisotropy.” Also note that in the elliptical case 6 = E, the 
functional form of equation (16a) becomes the same as that of 
equation (16~). This demonstrates that SH wavefronts are el- 
liptical in the general case; this is true even for strong ani- 
sotropy. 

Returning to the central point of 6 as the crucial parameter 
in near-vertical anisotropic P-wave propagation, some dis- 
cussion is necessary regarding the reliability of its measure- 
ment. It is clear from equations (16a) and (18b) that 6 may be 
found directly (in the case of weak anisotropy) from a single 
set of measurements at 0 = 0.45 and 90 degrees: 

6 = 4 F VP(rti4),VP(0) - 1 - VP(7t~2)WP(0) - I I[ I 
Because of the factor of 4. errors in VP(x/4)/Vr,(0) propagate 
into F with considerable magnification. In fact, if the relative 
standard error in each velocity is 2 percent. then the (indepen- 
dently) propagated absolute standard error in 6 is of order .12, 
which is of the same order as 6 itself (Table 1). The propaga- 
tion of this error through equation (17) implies that the rela- 
tive error in C,, is even larger. To reduce these errors to 
within acceptable limits requires many redundant experiments, 
of both V, (fl) and V&. (0). Since the measurement at 45 degrees 
may involve cutting a separate core, questions of sample het- 
erogeneity (as distinct from anisotropy) naturally arise. The 
data of Table 1 should be viewed with appropriate caution. 

SOME APPLICATIONS OF WEAK ANISOTROPY 

Group velocity 

For the quasi-P-wave, the derivative in equation (14) is 
given for the case of weak anisotropy [equation (I 6a)] by 

u; (0) 
sin Cl cos 0 6 

i;o 
+ 2(E - 6) sin’ 0 

np 1 , (19) 

i.e., it is linear in anisotropy. Therefore, the group velocity 
[equation (14)] expanded in such terms, 

is quadratic in anisotropy. Therefore, this term is neglected in 
the linear approximation 

V,(4) = n,(e). (20aj 

Similarly for the other wave types, 

V& (4) = 2’s” (8); (20bj 

and 

VW (4) = t.SH(@). (2Oc) 

Note that equations (20) do not say that group velocity equals 
phase velocity (or equivalently, that ray velocity equals wave- 
front velocity). These equations do say that at a given ray 
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(group) angle +, if the corresponding wavefront normal 
(phase) angle 0 is calculated using equations (22) below, then 
equations (16) and (20) may be used to find the ray (group) 
velocity. 

Group angle 

The relationship (13) between group angle C$ and phase 
angle 0 is, in the linear approximation. 

I 1 dc -- 
sm 8 cos 0 ~(0) dO 1 (21) 

For P-waves, use of equation (19) (fully linearized) in equation 
(21) leads to 

tan $P = tan 8, 1 + 26 + 4(& - 6) sin’ 8, 
L I 

. (224 

Similarly, for SV-waves, 

tan +sy = tan El,, 
L 

4 l+?p(E-&)(I--2sin*(1,,) ; 
I 

CW 
0 

and for SH-waves, 

tan & = tan &(l + 2~). (22c) 

These expressions, along with equations (16) and (20), define 
the group velocity, at any angle, for each wave type. 

Note that inclusion of the anisotropy terms in the angles 
[equations (22)], when used in conjunction with the phase- 

velocity formulas [equation (16)], does not constitute a viola- 
tion of the linearization process, even though products of 
small quantities implicitly appear. In linearizing equations (10) 
in terms of anisotropy, the angle 0 was held constant, i.e., was 
not part of the linearization process. The linear dependence of 
0 on anisotropy. at fixed $, is then given by equations (22). 

Polarization angle 

The particle motion of a quasi-P-wave is polarized in the 
direction of the eigenvector g, (Daley and Hron, 1977), where 

g,(B) = FP sin O,% + mP cos 0,&. * 

Since this is not parallel to the propagation vector k, [equa- 
tion (1 I)], the wave is said to be quasi-longitudinal, rather 
than strictly longitudinal; similar remarks apply to the quasi- 
SV-wave. The angle j, between k, and g,is given by 

cos 6, = & (k,, - g,) = & VP sin’ 8, + inP co? 0,). * 
PCP 

Expressions for the scalars /,, and mP are given by Daley and 
Hron (1977); in the case of weak anisotropy, these expressions 
reduce lo 

and 

/@ = I + A/,; 

Comparison of P-Anisotropies 
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-0.4 
_ 
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Data on 
Crustal Rocks 
(Lab & Field) 

I I I I I I 

-0.2 0.0 0.2 0.4 0.8 0.8 

Anisotropy Parameter E 

FIG. 4. This figure indicates the noncorrelation of the two anisotropy parameters 6 and E for the data in Table 1. 
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- - 
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Homogeneous 
Anisotropic 
Elastic 
Medium 

FIG. 5. A cartoon showing a simple reflection experiment 
through a homogeneous anisotropic medium. 

where A/,, and Am, are linear in anisotropies E and 6. It 
follows directly that 

cos & = 1. 

i.e., C,, = 0, and in the linear approximation the departure of 
the polarization direction g, from the wave vector k, is negli- 
giblc. Of course, g, deviates from the ray by the amount de- 
fined in equation (22a). This conclusion appears to disagree 
with a result by Backus (1965). 

Corresponding remarks apply to the shear polarization vec- 
tors: they are each transverse to the corresponding k, in the 
case of weak anisotropy. The polarization of each S-wave de- 
viates from the normal to the ray direction by the amount 
defined in equation (22b). 

Moveout velocity 

Consider a homogeneous anisotropic layer through which a 
conventional reflection survey is performed (Figure 5). The 
raypath to any offset x(+) consists of two straight segments, as 
shown in the figure. The traveltime r is given (trivially) as 

* 

where r is the vertical traveltime. Solving for 1’. 

Because of the 4 dependence, the function in equation (23) 
plots along a curved line (instead of a straight line) in the 
I* - .x’ plane. The slope of this line is 

fir* 1 f’ f/V2 _=~ 
d?? V2(4J) v’ ds’ 

Normal-moveout velocity is defined using the initial slope of 

this line: 

&=liyI($)=&[l -&*I,. (25)* 

(This is, of course, the short-spread I/NM0 .) The second term on 
the right is generally not zero. Hence it is clear from equation 
(25) that, even in the limit of small s offsets (i.e., with all waves 
propagating nearly vertically), with all velocities near V(O), the 
resulting moveout velocity is not the vertical velocity V(0). 

Carrying out the derivative [using equation (13)] is alge- 
braically tedious. but straightforward. For P-waves, the deri- 
vation is 

L’,,,(P) = a,, J-TZ, (26a)* 

independent of c. The value of this velocity is indicated in 
Figures 2 and 3 by a short arc below the origin. This line 
represents a segment of that “wavefront” which would be 
inferred by an isotropic analysis of a surface reflection experi- 
ment such as that depicted in Figure 5. 

F-or S V-waves, 

1 

Ii2 ; (26b)* 

for SH-waves (which have elliptical wavefronts) 

VW, (SW = so &=Y 

= L$,l(X/2) = V,,(n/2). (26c)* 

The last result (for SH) does not require the limit x+ 0. i.e.. 
the I’ - x2 graph is a straight line, as for isotropic media. This 
is a well-known result for elliptical wavefronts (Van der Stoep, 
1966), as is the fact that the resulting V,,, is identical to the 
horizontal velocity, even though all rays are near-vertical. 

For weak anisotropy, equations (26) reduce to 

V,,,(P) = a,(1 + 6); (27a) 

vN,,(sv~=P,[l ++q (27’4 

and 

V,,oW) = Po(l + Y). (27c) 

Comparison of equations (27a) and (18a) shows that, for P- 
waves, the moveout velocity is equal to neither the vertical 
velocity u,, nor the horizontal velocity a,(1 + E). Neither is 
the moveout velocity necessarily intermediate between these 
two values, since F and c may be of opposite sign (Table 1 L 

Equation (26a) is equivalent to expression (3) of Helbig 
(1983). In the present version, the departure of VNMo/u, from 
unity is clearly related to the same anisotropic parameter 6 
which appears so prominently in other applications. 

Horizontal stress 

One way to estimate the horizontal stress in the sedi- 
mentary crust of the Earth is to describe an element of rock at 
depth as a linearly elastic medium in uniaxial strain (Hubert 
and Willis, 1957). Despite the obvious shortcomings of this 
approximation (e.g., the difference between static and dynamic 
moduli, Lin, 1983, it remains widely used as a means to esti- 
mate horizontal stress for hydrofracture control, etc. 
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The analysis is normally done in terms of isotropic media; it 
is instructive to consider the same problem in anisotropic 
media. Here, “anisotropy” still is taken to mean “transverse 
isotropy with symmetry axis vertical,” even though this sort of 
analysis is usually done in a context of preferred horizontal 
stress direction, resulting in an oriented hydrofracture. This 
may often be justified, since the resulting azimuthal anisotropy 
is usually of the order of 1-2 percent, whereas the convention- 
al anisotropy is frequently 10-20 percent. 

The vertical stress crj3 and the horizontal stress ol, are, 
from equation (l), related by 

and 

0 33 = C31c11 + c32 E22 + c33 E33 GW 

(3 11 = C,,a,, + C,z%* + C13c33. (28b) 

The other strain terms vanish because of null values of C,,. 
(In the application to hydrofracturing, these stresses are re- 
placed by effective stresses; however, the following argument 
is not affected.) 

In the case of uniaxial strain, &t, = cJ2 = 0, so that the 
horizontal stress is 

c 
Is II =(J33 

13 

C 33 

The vertical stress is due to gravity: 

033 = - Lw? 

where y is the acceleration due to gravity and z is the depth. 
In the isotropic case, the ratio of elastic moduli [equation (4)] 
may be expressed in sereral equivalent ways: 

(JII c i _=!.A \’ K -f~ b2 
03.1 c 

=-zz-=-= ] -2- 

J. + 2u 
(30) 

33 l-v K+jp a2’ 

where u and 8 are the velocities of P-waves and S-waves. 
respectively, and v is Poisson’s ratio. Hence, a and fi could be 
measured in situ and, given the assumptions just~ stated, cri i 
could be estimated using equations (29)(30). 

In the anisotropic case, the corresponding expression is, 
from equation (17) 

For weak anisotropy. equation (31) reduces to 

011 C _=_!2= 
033 C 33 ( > ,-2@ +& 

a; 
(32) 

Comparison with the last formulation of equation (30) shows 
that the anisotropic correction is given simply by the ani- 
sotropy parameter 6. In a typical case. P,/a, z 0.5, so that the 
first term in equation (32) is also ~0.5. Table I shows that 6 is 
often not negligible in comparison to 0.5; the correction may 
be either positive or negative. Therefore, use of the isotropic 
model, equation (30) may lead to serious overestimates or 
underestimates of horizontal stress [equation (29)]. These 

errors may reinforce or reduce errors due to failure of other 
aspects of the model of elastic uniaxial strain. 

DISCUSSION 

The casual term “the anisotropy” of a rock usually means 
the quantity E, calculated using equation (18b). It is often 
implied that, if E and the vertical velocity a, are known, the 
velocity at oblique angles is calculable simply by using some 
trigonometric relations. Of course, this assumption is not true; 
the P velocity at oblique angles requires knowledge of a third 
physical parameter, in addition to the trigonometric functions. 
Equation (16a) shows that, for weakly anisotropic media, the 
relevant third parameter is the anisotropic parameter 6. The 
equation further shows that, for near-vertical P-wave propa- 
gation, the 6 contribution completely dominates the E contri- 
bution. Because of this, 6 (rather than E) controls the aniso- 
tropic features of most situations in exploration geophysics, 
including the relationships among ray angles, wavefront 
angles. and polarization angles and the moveout velocity for 
P-waves, and the horizontal stress-overburden ratio. 

With today’s computers. there is little excuse for using the 
linearized equations (16) for computational purposes, even 
when the anisotropy is so small that their numerical accuracy 
is high. All programs should be written using the exact equa- 
tions (IO) or (7). The linearized equations are useful because 
their simplicity of form aids in the understanding of the phys- 
ics. For example, in a forward modeling program, a routine 
may be able to “predict data” for comparison with real data 
that seem to call for an anisotropic interpretation. A primary 
obstacle is that few geophysicists are prepared to propose~rea- 
sonable values for the five different C,, required by the pro- 
gram, or to adjust values iteratively to match the real data. 
however most interpreters can propose reasonable values of 
vertical velocities a0 and b. from direct experience with iso- 
tropic ideas. Further. most are prepared to estimate the values 
of anisotropies E (and */ if needed); the sign (+) and general 
magnitude (020 percent) are commonplace. That leaves only 
d (for a P or SC’ problem), and the linearized equations (16) 
imply that determination of 6 is where iterative adjustments 
should be concentrated. since the value of 6 is probably the 
most crucial. Table 1 illustrates its range of values, extending 
into both the positive and negative ranges. 

Table I also provides a guide for construction, for modeling 
purposes. of an equivalent anisotropic medium from finely 
layered isotropic media. A tempting simplification is to 
assume a constant Poisson’s ratio among these isotropic 
layers (Lcvin, 1979). It is easy to show analytically (Backus, 
1962). as verified numerically in the corresponding entries of 
Table 1. that assumption of constant Poisson’s ratio leads to 
6 = 0. While this value is indeed plausible, nonzero values of 
either sign are also plausible. This particular choice happens 
to minimize the resultant anisotropic effects for P-waves. The 
assumption of constant Poisson’s ratio is, therefore, a danger- 
ous one. The hypothetical sequences shown in Table 1 should 
not be taken as representative for any actual area without 
careful justification. (These comments are entirely consistent 
with those of Thomas and Lucas, 1977, and of course with the 
calculations of Levin, 1979.) 

A second point that deserves further emphasis is that 
“weak” anisotropy (defined as E, 6, y CC l), by definition, leads 
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to second-order corrections whenever the anisotropy is com- 
pared to unity, as in equations (16). However, the anisotropy 
sometimes occurs in a context where it is comparable, not to 
unity, but to another small number [e.g., equation (32)]. In 
this case, the anisotropy makes a first-order contribution, 
rather than a second-order correction (even though it is de- 
fined as weak), and should therefore not be neglected. Other 
common contexts of interest in exploration geophysics where 
the anisotropy appears in this way as a first-order effect will 
be the subject of future contributions. 
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