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Biot-consistent elastic moduli of porous rocks: 
Low-frequency limit 

Leon Thomsen* 

ABSTRACT ular, such model theories should also predict the two 
The semiphenomenological Biot-Gassmann (B-G) relations described above. Standard models for dilute 

formulation of the low-frequency elastic moduli of concentrations of spherical pores and/or ellipsoidal 
porous rocks does contain two well-known predictions: cracks do predict these relationships. However, in gen- 
(1) the shear modulus of an unsaturated rock (which is eral, the “Self-Consistent” (S-C) model (developed to 
permeated by a compressible fluid, e.g., gas) is identical deal with finite concentrations of heterogeneities) vio- 
to that of the same rock saturated with liquid, and (2) lates these predictions and hence is not consistent with 
the unsaturated ‘bulk modulus differs from the saturated the underiying Biot~-Gassmann theory. [The special case 
bulk modulus by a defined amount. These predictions of S-C theory, corresponding to pores only (no cracks), 
are tested by ultrasonic data on a large number of sedi- is consistent with the B-G model.] A new formulation of 
mentary rocks and are approximately verified, despite the model theory, for finite concentrations of heteroge- 
the evident frequency discrepancy. The B-G theory neities of ideal shape, is developed so as to be explicitly 
makes only minimal assumptions about the microscopic consistent with B-G. This “Biot-consistent” (B-C) for- 
geometry of the rock; therefore, any model theory malism is the first theory truly suitable for modeling 
which does make such assumptions (e.g., spherical most sedimentary rocks at seismic frequencies, in terms 
pores) should be a special case of B-G theory. In partic- of porosity and pore shape. 

INTRODUCTION 

It is frequently of interest in exploration geophysics to be 
able to interpret seismic velocity measurements in terms of 
rock porosity. Although that goal remains elusive, consider- 
able progress has been made on the corresponding direct 
problem: using assumed porosity and other lithologic infor- 
mation to predict rock elasticity. The present work constitute: 
a contribution to solving that problem. 

Biot (1941) introduced a semiphenomenological formulation 
of the equations of elasticity for a porous aggregate. His chief 
contribution lay in recognizing the pressure and volume in- 
crement of the pore fluid as additional state varibles, along 
with stress and strain in the solid. Gassmann (1951a) ex- 
pressed the phenomenological variables of the theory in terms 
of the separate properties of the pore fluid and the solid ma- 
terial. The theory is briefly reviewed here, highlighting two 
predictions of the otherwise phenomenological theory. Despite 
further development (e.g., Biot 1956a, b, c, 1962; Biot and 
Willis, 1957; Gassmann 1951b) and many applications (e.g., 
Geertsma, 1957; Geertsma and Smit, 1961; Gardner et al., 
1974) notably to bright spot analysis (e.g., Domenico, 1974), 

the theory has not been adequately tested, either experi- 
mentally or theoretically, until recent times. 

That situation has recently changed. On the theoretical side, 
Burridge and Keller (1981) have carefully derived the basic 
equations [equation (1)] which were first assumed by Biot, 
and have clarified the frequency regime in which they are 
valid. Experimentally, Plona (I 980) observed the “Biot slow 
wave” predicted by the theory, thus suggesting the legitimacy 
of the other predictions of the theory. These other predictions, 
mentioned above, relate the elastic moduli of the “drained” 
state to those of the “undrained” state, or equivalently the 
unsaturated moduli to the saturated. They have been partially 
verified before, using a few rock samples; a much larger data 
set is presented here in partial support of these predictions. 

Independently, a number of model theories have emerged, 
seeking to provide stronger predictions on the elasticity of 
aggregates through stronger assumptions about the micro- 
scopic geometry of the constituents. Since these model theories 
share the (minimal) assumptions of the Biot-Gassmann (B-G) 
theory about the structure of the pore space, they should also 
predict the relationships mentioned. 

This requirement, although obvious once stated, has appar- 

Manuscript received by the Editor March 1, 1985; revised manuscript received May 3, 1985. 
*Amoco Production Co., P.O. Box 3385. Tulsa, OK 74102. 
c 1985 Society of Exploration Geophysicists. All rights reserved. 

2797 



2798 Thomsen 

ently not been applied to any of these theories. Gassmann 
(1951 b) calculated unsaturated moduli using a model of 
spherical Hertzian grains, then subsequently used the B-G 
predictions to calculate the saturated moduli. Of course, the 
Hertzian model should be independently applicable to the 
saturated case; the difference from the unsaturated case 
should then be compared analytically to the B-G predictions. 
Gassmann didn’t do this comparison; nor is this model so 
tested here. Similarly, Korringa and Thompson (1977) and 
Korringa et al. (1979) used a model calculation for the unsatu- 
rated moduli and then used the B-G predictions for the satu- 
rated moduli, without independently verifying the consistency 
of the model. 

The requirement of Biot-consistency is applied later to the 
standard theory for dilute concentrations of interconnected 
spherical pores and/or thin cracks, where it is found that the 
theory does, in fact, contain the B-G predictions, in the limit 
of low porosity and crack density. 

However, these limits (roughly, porosity less than 10 per- 
cent, crack density less than .l) are too low to permit appli- 
cation of the theory to most sedimentary rocks. Rocks of in- 
terest to the petroleum industry may commonly have porosity 
as high as 40 percent and/or crack density as high as .3 or 
more. To cope with this situation, the “Self-Consistent” (S-C) 
theory (Hershey, 1954; Hill, 1965; Budiansky, 1965) and the 
differential S-C theory (Bruner, 1976) have been proposed, 
with the suggestion that they adequately approximate the in- 
teractions between nearby inclusions. None of these model 
theories has been adequately tested against experimental data 
on aggregates of the assumed microscopic geometry. It will be 
shown later that, except for the special case of no cracks, the 
self-consistent theories are not consistent with B-G theory, in 
the above sense. Therefore, no model theories exist in the 
literature which are suitable for analyzing the majority of sedi- 
mentary rocks at seismic frequencies. 

Finally, a new formalism is developed to extend the stan- 
dard model theory (for dilute concentrations) of fluid hetero- 
geneities to high concentrations of pores and cracks, while 
preserving explicitly the consistency with B-G theory. In the 
examples shown, the resulting saturated “Biot-Consistent 
moduli” differ numerically from the corresponding S-C 
moduli for the same system. In particular, the difference be- 
tween saturated and unsaturated moduli (which is responsible 
for the bright-spot effect), is given correctly (i.e., according to 
Biot) by the present model, whereas it is substantially under- 
estimated by S-C theory at high crack density. 

BIOT-GASSMANN THEORY 

Biot (1962) provided a relatively clear derivation of the 
equations of poroelasticity, unifying differences of notation 
and concept from his earlier papers. Following that discussion 
(with certain differences in notation) the constitutive equations 
for a porous, linearly elastic, isotropic aggregate at low fre- 
quency may be written 

? = G*y, 

p = -K*e + ap,, 

pf = -aM8 + MAVJV. 

(la) 

(1’4 

(14 

Here the bars refer to a volumetric average over an elemental 
volume V (fixed in the solid framework) which contains many 
grains and pores; i and p are shear stress and pressure, respec- 
tively, averaged over the entire volume V (both solid and fluid 
portions); 7 and 0 are shear strain and dilatation, respectively, 
averaged over the entire volume V; pJ and AVP are incremen- 
tal fluid pressure and incremental pore volume; and G*, K *, 
a, and M are phenomenological elastic parameters to be dis- 
cussed below. 

Note that since p, is not averaged, equations (1) assume 
that the pore space is interconnected and that the frequency is 
sufficiently low that the pore fluid pressure is uniform every- 
where within V. Because of the possibility of fluid flow from 
V, the pore volume increment AV, may differ from the specific 
pore fluid volume increment AV, and may not in general be 
determined from pr by using the fluid compressibility. Equa- 
tions (1) implicitly assume that the solid parts of V are also 
homogeneous and isotropic on the small scale; Brown and 
Korringa (1975) discussed the relaxation of these assumptions. 

Note that since equations (1) are simply linearized constitu- 
tive relations, all these state variables (i, p, 7, 0, pr, and AV,) 
represent infinitesimal increments from an initial state of equi- 
librium. The elastic parameters (G*, K*, a, and M) are func- 
tions (possibly nonelastic and/or nonlinear) of the stresses and 
strains and fluid pressure (which all may be large) of the initial 
state, and possibly of the history leading to the initial state. 

Biot and Willis (1957) gave an interpretation of the con- 
stants (G*, K *, a, and M) in terms of various compaction 
experiments. Gassmann (195la) gave, without derivation, an 
interpretation of the constants in terms of more familiar 
properties of the solid and of the pore space separately. Be- 
cause this extension of Biot’s work is nontrivial, the results of 
this section are called the Biot-Gassmann (B-G) formulas. 
However, since Gassmann did not provide derivations, I com- 
ment briefly on these interpretations. 

It is clear that if the pore fluid were permitted to drain out 
of the elemental volume V, upon application of incremental 
pressure p (so that pf = 0), then equations (la) and (1 b) reduce 
to Hooke’s equations with elastic moduli G* and K* 
characterizing the response of the drained, porous framework. 
This corresponds to the “drained” condition, which is not 
commonly encountered in a context of wave propagation. 
Nevertheless, the “frame moduli” G* and K * play an impor- 
tant role. 

By considering separately the pore volume and the solid 
volume, Geertsma (1957) and Nur and Byerlee (1971) showed 
that, if the pore space is connected, 

and 

K 
M=” 

a-4’ 
(3) 

where K, is the incompressibility of the solid grains and 4 is 
the porosity. The four independent material parameters of the 
theory are then G*, K*, K,, and 4. 

So far the theory is completely phenomenological and de- 
scriptive, i.e., it has offered no predictions. I now consider the 
new effects which arise because of the explicit appearance of 
the fluid pressure in equations (I). The increment in fluid pres- 
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sure p, clearly depends upon whether or not the fluid is per- 
mitted to drain from V during the application of y. The 
drained case is encountered in situations of soil compaction, 
etc. For low-frequency wave propagation, neighboring ele- 
ments are subject to virtually the same stress and strain as is 
V, so there is no place for the fluid to drain, which potentially 
affects the response to stress. However, it is evident immedi- 
ately, since equation (la) is not coupled to equation (lb), that 
the shear modulus is independent of p, and hence of the con- 
ditions of drainage. Equation (la) indicates that the shear 
modulus G of this “undrained” condition is 

G = G*, (4) 

i.e., that the undrained shear modulus is equal to the drained 
shear modulus. This constitutes an unambiguous prediction of 
the B-G theory which is tested below. 

The equivalent prediction for the undrained bulk modulus 
requires specification of the pore pressure. Assuming that no 
fluid is lost from the elemental volume during application of ,& 

AV, = AV, = - V’p,/‘K, = -+VprjK,, (5) 

where V, and K, are the specific volume and incompressibility 
of the fluid. Using equations (5) (lb), and (lc), it can easily be 
shown that the increment in fluid pressure is related to the 
dilatation by 

pr= -aK,B :‘[ ++>(a-+) , 1 (6) s 
and hence that the drained incompressibility is (Gassmann, 
195la; Geertsma, 1957) 

(7) 

This constitutes an unambiguous prediction of the B-G theory 
for the undrained bulk modulus K, analogous to equation (4) 
for G. 

Before testing these predictions, notice that as Fr ap- 
proaches 0 in equation (7), K approaches K*, the frame in- 
compressibility. This illustrates that, for a rock saturated with 
a highly compressible fluid (e.g., a gas), the drainage con- 
ditions are irrelevant and the observed bulk modulus is K*, 
even if the experiment is undrained. It also shows that the 
predictions of equations (4) and (7) are equivalent to predic- 
tions concerning the functional form of the dependence of the 
moduli upon K,, or [in view of equation (6)] upon p,. Hence 
in the following, the moduli are often written with the explicit 
argument K f ; the asterisk indicates the special case K, = 0. 

Equivalently, the argument is the fluid pressure increment pf. 
The equations of motion define elastic-wave velocities, 

formed in the usual way from the moduli and density p: 

and 

VP(K,) = C(K(K/) + $G)hl 1’2> 

VS(K,) = [G/PI l”> 

with the density given by 

P = $Pr + (1 - (+)P,. 

The equations of motion yield a third solution, the “Biot slow 

wave” (cf., Plona, 1980; Johnson, 1985) which does not enter 
the present discussion. 

Strictly speaking, the predictions of equations (4) and (7) are 
valid only for low frequencies (lower than a critical frequency, 
which depends upon permeability and is usually in the sonic 
band). Nevertheless, they have usually been tested with ultra- 
sonic data (e.g., Wyllie et al., 1962; Domenico, 1974; Gregory, 
1976; Murphy, 1984) and usually with a relatively small set of 
samples. Figures 1 and 2 present similar tests (using ultrasonic 
data) of the predictions for G (K,) and K (Kf), respectively. 
The merit of these figures is that they report results from 
many samples, both elastics and carbonates, taken with simi- 
lar laboratory techniques (ultrasonic time-of-flight techniques 
on 1 inch cores; unsaturated by room drying; saturated with 
brine under pressure until density stabilizes). 

For G, Figure 1 shows broad agreement between prediction 
and observation over more than an order of magnitude of 
variation in G, with significant scatter but no apparent bias. 
For K, Figure 2 shows, in addition to scatter, a significant 
bias: the predictions are too low. The two dashed lines indi- 
cate (for each of the two lithologies) the average locus of the 
naive prediction 

K(K,) = K*. 

The vertical difference between the dashed line and the solid 
line evidently gives the size of the correction term (second 
term) in equation (7). The points scatter roughly halfway be- 
tween the dashed and solid lines. It is clear that the B-G 
correction for unsaturated-to-saturated bulk modulus is too 
small. by roughly a factor of two. 

Winkler (1984) observed the same effect in a smaller data set 
and reached the conclusion that this observed bias is a high- 
frequency effect in the observations, not a fault in the (low- 
frequency) prediction. He specifically analyzed the bias in 
terms of local (non-Biot) flow mechanisms [arising from non- 
constant p,(x), within each volume V]. Presumably the scat- 
ter (in addition to the bias) is caused by similar high-frequency 
effects. It is clearly important that a similar test, using a large 
number of low-frequency data, should be done to examine the 
validity of the predictions more clearly. 

Despite the imperfect nature of the test, the conclusion is 
drawn that the low-frequency Biot-Gassmann relations do 
have sufficient merit to justify their use as a theoretical con- 
straint on model theories, as in the next section. 

In the Biot-Gassmann theory, assumptions about the 
microscopic geometry of the rock are minimal. The primary 
assumption is that the pore space is entirely interconnected, 
ensuring that: (1) the fluid pressure pf is constant everywhere 
in the mass element (not averaged, as with p); and (2) the 
characterization of the primitive constants a and M, in terms 
of the more fundamental parameters K,, and + is exact, as 
given in equations (2) and (3). 

Therefore, any theory which calculates K * and K in terms 
of K,, @, etc., through an assumption about the microscopic 
geometry of the rock, should be consistent with Biot theory as 
long as it also assumes linear elastic behavior of all constit- 
uents and connected pore space. In other words, a theory 
which makes stronger assumptions than the Biot-Gassmann 
theory (e.g., assumptions about microscopic geometry) should 
reach stronger conclusions (e.g., calculating K* itself), but 
should constitute a special case of the more general theory. In 
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particular, the model results for G(K,), and independently for ing theory for a dilute concentration of thin, ellipsoidal cracks 
G*, should analytically verify the prediction of equation (4), is due to Bristow (1960) and his predecessors. A thorough 
and those for K(K,) and K * should verify equation (7). review was given in Watt et al. (1976). 

Budiansky and O’Connell (1980) showed how to combine 

MODEL THEORY: NONINTERACTING these results for the case where both spherical pores and thin 
cracks are present, with fluid pressure equalization between 

The standard theory for the elasticity of a solid, isotropic the two populations, Since the cracks are much more com- 
matrix permeated by a dilute concentration of spherical pores pliant than the pores and since fluid may flow from crack to 
is due to Eshelby (1957) and his predecessors. The correspond- pore, this fluid pressure equalization is an important consider- 
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ation. The issue of fluid pressure equalization for dilute con- 
centrations of the pores is potentially embarrassing. It may be 
avoided conceptually by assuming a sparse network of very 
thin tubes which connect the pores and cracks. Such tubes 
would allow fluid flow and pressure equalization, but (by 
arguments reviewed in Watt et al., 1976) they would affect the 
porosity and the elasticity only negligibly. Since the theory for 
dilute concentrations will be shown to be consistent with Biot 
theory, the issue is moot. 

In the model theory, the “canonical problem” of a single 
heterogeneity in an infinite medium is solved first. For dilute 
concentrations, the surrounding medium is taken to be identi- 
cal to that of the solid grains. Since the pores and cracks are 
far apart, there is no elastic interaction between neighboring 
heterogeneities, and the effects an the moduli are simply addi- 
tive, leading to formulas linear in porosity or in crack density. 

Adapting the methods of Budiansky and 0’Conr)ell (1980) 
to the degenerate case of (noninteracting) dilute con- 
centrations yields compact expressions for the elastic moduli: 

B,c , 1 
and 

In these expressions, the tilde indicates a model prediction; G, 
is the shear modulus of the solid grains; $p is the volume 
fraction of the pores, $, is that of the cracks, 4 is the total 
porosity 

E is the crack density, related to 4, (for circular cracks) by 

3 4, 
E=Gh’ 

where the aspect ratio h is the thickness/diameter ratio of the 
cracks. The model parameters in equations (8) and (9) are 
given by 

and 

(1 + v,) 
-3(1- 

for the pores, and 

B ~ z t1 - ‘,)t5 - v,) 
s 45 (2 - v,) ’ 

and 

A ,J6 1-v: 
,s 

9 (l-2v,)’ 

I - 2G,/3K, 
v,V = 

2 + 2GJ3K; 
(lOe) 

The theory may be generalized to a spectrum of crack shapes 
by replacing E by (E), the average over the spectrum, every- 
where in equations (8) and (9). This leads to different formulas 
than were used in Hadley (1978) in a problem involving non- 
connected cracks. 

One can verify that the functional dependence of equations 
(8) and (9) on the fluid bulk modulus K, is equivalent to that 
of the more general Biot-Gassmann relations of equations (4) 
and (7). For G, this is trivial. Since, according to eqpations (8) 
and (lOat(lOd) the shear modulus depends only on the 
properties of the solid and on $,, and E, there is no dependence 
on K, and equation (4) is verified immediately. 

For the bulk modulus some algebra is required, because the 
model parameters a,, h,, A,, and B, must be eliminated in 
favor of the model frame modulus R* = f?(K, = 0). A model 
a-parameter 

8= 1 - i?*/K, 

is defined analogously to equation (2). Then it is straightfor- 
ward to show that equation (9) is equal to 

i.e., equation (7) is verified for this model. The derivation of 
equation (i ij from equation (9) is exact in the case of no 
cracks; with cracks, or both cracks and pores, it requires the 
expljcit use of the dilute-concentration assumption. Since 
equations (8) and (9) already contain that assumption, it may 
be concluded that this model of microscopic geometry is, in 
fact, consistent with Biot-Gassmann theory. Since the equa- 
tions were derived independently, this confirmation of consist- 
ency lends further credibility to both formulations. 

Despite this success, however, the theory is not suitable for 
modeling most sedimentary rocks because it is limited to small 
values of porosity and crack density. It is worth noting at this 
point that one theory developed for dilute concentrations 
(Kuster and Toksiiz, 1974) differs from the standard theory 
discussed here. It is easy to verify that this model is not consis- 
tent with the Biot-Gassmann theory; in particular, it predicts 
that shear modulus varies with fluid saturation or, equiva- 
lently, with K,. 

(lOa) 
MODEL THEORY: “SELF-CONSISTENT” 

(1W 

(104 

for the cracks. These are functions of only the Poisson’s ratio 
of the solid : 

Because the model discussed above is limited to small po- 
rosity $,, c$, , and small crack density E, it is important in 
upper crustal problems to consider extensions of the theory to 
finite concentrations of fluid inhomogeneities. An exact model 
would involve computatipn of interactions between neighbor- 
ing inhomogeneities, at least on a statistical basis. This has not 
proven to be feasible; see Watt et al. (1976) for a review and 
discussion. 

The “Self-Consistent” theory has been proposed as an ade- 
quate approximation for these interactions (cf., Budiansky and 
O’Connell 1976; O’Connell and Budiansky, 1974, 1977; Berry- 
man, 1980). It assumes without proof that the effect of many 
spherical pores, for example, is given by the solution of the 
canonical problem of a single pore surrounded, not by the 
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solid, but by a uniform medium with the elastic properties of 
the fully porous aggregate itself. This is one justification (an- 
other is discussed later) of the label “self-consistent.” Math- 
ematically, it means replacing the model parameters (a,, bz, 
A,, and B,) in equation (10) with similar parameters (& F, A, 
and 8) defined in terms of the Poisson’s ratio ; of the porous 
medium itself. 

It is plausible to assume, for large porosity and/or crack 
density, that all voids are fully interconnected, allowing fluid 
pressure equalization during a low-frequency experiment. This 
is particularly important where more than one pore shape is 
present. The validity of Murphy’s (1985) comparison of SC 
theory to data is diluted by his use of the inappropriate (un- 
connected) form of the theory (O’Connell and Budiansky, 
1974) rather than the connected form (Budiansky and O’Con- 
nell, 1980). At higher frequencies, where fluid pressure equal- 
ization is imperfect, the concepts and methods of O’Connell 
and Budiansky (1977) are applicable. 

In the case of connected pores and cracks at low frequency, 
the self-consistent expression is (Budiansky and O’Connell, 
1980) 

R(Kf) = K, 
~-(~-~)(~+q (12) 

K, 

[ i 
l+T 

6 +& K 1-n+ c$ >I 
This may be compared with equation (8); note that in one 
place on the right side of equation (12) K, also has been 
changed to z. 

If the inhomogeneities were solid, then the self-consistent 
theory for the shear modulus would be analogous to equation 
(12): 

However, O’Connell and Budiansky (1977) argued heuris- 
tically that for the present case of fluid inhomogeneities, “the 
cracked solid will respond in shear as if the cracks were 
empty.” Hence they argued that the shear modulus of the 
saturated, undrained rock should be given by 

This differs from the above expression, not only by setting 
G, = 0, but also by the appearance of the model parameters 
&*, B* of the unsaturated, drained rock, despite the fact that 
the rock surrounding the pores is saturated and undrained. 

The argument leading to equation (13) involved the differing 
orientations of the various cracks, with respect to the applied 
shear stress, and is clearly inapplicable to the present case 
which also contains spherical pores. The proposition that, in 
pure shear, “both cracks and pores behave as if they were 
empty,” was in fact rigorously proven by Burridge and Keller 
(1981) in their derivation of Biot’s equations (1). Since equa- 
tion (la) is independent of pr, the shear modulus is indepen- 

dent of K, and the cracks and pores are independent of the 
particularities of the pore fluid. 

The argument (of Budiansky and O’Connell, 1977) is in fact 
a heuristic justification of an assumption (rather than a con- 
clusion); it is an additional argument to those of the original 
S-C theory. It was de facto judged to be appropriate when the 
heterogeneities are fluid and interconnected. Since the re- 
sponse parameters g*, B* in equation (13) do not reflect the 
properties of the surrounding medium (whose Poisson’s ratio 
; does depend upon K,), the theory can no longer be de- 
scribed strictly as self-consistent in the sense justified earlier. I 
therefore call the results of equations (12) and (13) the “aug- 
mented self-consistent (AS-C) moduli.” The original term has 
another justification: the final results are the same whether 
derived in terms of elastic moduli or compliances (Walpole, 
1969). This symmetry is not disturbed by the augmenting as- 
sumption leading to equation (13). 

Following the previous program, I wish to verify that the 
functional dependence of the AS-C moduli of equations (12) 
and (13) on K, is that of the more general Biot-Gassmann 
theory. As previously, this is trival for the shear modulus c’. 
By explicit assumption, the saturated G’ [equation (13)] is 
given in terms of the same frame parameters 6 *, B*, and ;* as 
is the frame modulus G*. So the B-G prediction, equation (4) 
for the shear modulus is verified automatically. 

For the bulk modulus, R* can be found by setting K, = 0 
in equation (12) both where it is explicit and where it is im- 
plicit in G, .& and ;: 

A*c 1 = K*. (14) 

It is apparent, since !?* is a function of the unsaturated model 
parameters L?*, A *, and 16~ * (rather than the saturated model 
parameters L?, 2, and i6v) that Z and A’ may not be eliminated 
from equation (12) in favor of K *. Hence, for this rather gen- 
eral model, it is clear that the augmented self-consistent theory 
is not consistent with the more basic Biot-Gassmann theory. 
In other words, in general the AS-C equation (12) is not equiv- 
alent to the B-C equation (7). 

However it may be shown (R. J. O’Connell, pers. comm., 
1984) in the special case of no cracks (spherical pores only), 
that the two formulas are in fact algebraically equivalent. 
Hence for this special case, the augmented self-consistent 
moduh are also consistent with Biot-Gassmann. 

In modeling sedimentary rocks, it is usually necessary to 
include some density of cracks in order to fit theory to data. 
The “cracks” thus inferred are not necessarily of brittle origin; 
they are simply that portion of the pore-shape distribution 
which is thin and flat. Similarly, the “spherical porosity” is 
simply a model representation of the more equant portion of 
the pore-shape distribution. Since, in general, a finite (nondil- 
ute) concentration of both types of porosity is required to 
model sedimentary rocks, then some generalization of the 
noninteracting theory described earlier is required. It is clear 
that the augmented self-consistent model is not, after all, ap- 
propriate for modeling such rocks since it is not consistent 
with the underlying Biot theory. 

A variation of self-consistent theory has been proposed 
(Brunei-, 1976); Clearly, 1978; Henyey and Pomphrey, 1982; 
Sheng and Calligari, 1984) in which the basic idea of self- 
consistency is applied in differential fashion, and the final re- 
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sults are expressed as integrals over crack density and/or po- 
rosity. These modifications have been criticized as physically 
unreasonable (O’Connell and Budiansky, 1976). However it is 
easy to generalize the results of this section to show that the 
differential self-consistent formalism (augmented or not), as 
applied to porous rocks, is also inconsistent with Biot theory. 
Hence it is not suitable for modeling most sedimentary rocks 
either. Further, the next section shows that this particular 
debate is moot. 

MODEL THEORY: BIOT-CONSISTENT 

It is clear from the foregoing that the character of the 
medium surrounding the heterogeneity in the canonical prob- 
lem is not fixed in a necessary, logical way, but instead it offers 
a degree of freedom which may be used to approximate the 
elastic interactions between neighboring heterogeneities in the 
model rock itself. The self-consistent theory utilizes this degree 
of freedom in this way, assuming (except for the AS-C compli- 
cation discussed above) that the surrounding canonical 
medium has the same bulk and shear moduli as the porous 
rock itself. In other words, the surrounding canonical medium 
is assumed to respond to external loads p, i6t with dependent 
snate varia’bles (strains) f66, i6y whi& are those of ihe rock 
itself. 

However, Biot recognized that, in a porous aggregate, there 
are three dependent state variables rather than two. The third 
variable may be taken, as in equations (I), to be the fluid 
pressure pr ; in the undrained case this is equivalent to the 
increment in pore volume AV,/V. The corresponding modulus 
may be taken as the pore incompressibility, defined as 

(15) 

Hence an aggregate obeying the Biot-Gassmann equations (a 
“Biot medium”) has three characteristic moduli (G, K, and 
Kp), rather than two. These three moduli, specified at any 
particular value of K, (e.g., any particular saturation) then 
define the elastic response at all K, (e.g., all saturations), 
through equations (4) and (7). 

Hence in the model theory for a porous rock, the sur- 
rounding medium of the canonical problem should also be a 
Biot medium and should possess three characteristic moduli 
rarber than two. Tlnat is, the properties of the canonicai 
medium should be chosen so that the predictions of equations 
(4) and (7) of Biot-Gassmann regarding the functional depen- 
dence of the moduli on K, are satisfied identically. When this 
assumption is made, the resulting model elastic moduli will be 
consistent with the underlying Biot-Gassmann theory and 
may be called “Biot-Consistent.” 

In the derivation of explicit expressions for the Biot- 
consistent model moduli, a certain degree of arbitrariness 
arises. I wish to characterize the surrounding Biot medium of 
the canonical problem, at all values of K,, by specifying three 
parameters only, recognizing that equations (4) and (7) pro- 
vide the functional dependence upon K,. Biot did not specify 
the values of K * and G *, but only the differences R(Kf) - I? * 
[equation (7)] and G(Kf) - G”* [null, equation (4)]. These dif- 
ferences depend upon the incremental fluid pressure p,. [equa- 
tion (6)] and the corresponding fluid shear stress (null). Since 
the fluid stress is the same in both the fluid heterogeneity and 
the canonical Biot medium, this fixes, in effect, two of the three 
necessary parameters. 

The third and final parameter must fix the overall stiffness 
of the Biot canonical medium. It is natural to assume that G,* 
of the canonical Biot medium should be set equal to c’* of the 
model rock (following S-C or AS-C theory). Alternatively, it 
may also be natural to assume that Ki of the canonical Biot 
medium should be set equal to R* of the model rock. Here 
the former assumption (GB = G*) is made, on the grounds 
that this choice does not imply a preferred status of any par- 
ticular saturation state (any particular Ks). However, it is rec- 
ognized that some arbitrariness therefore remains in the pres- 
ent formulation. 

Finally, assume that K, and + of the canonical Biot medium 
are those of the model rock, and that the fluid common to 
both has the incompressibility K,. It is clear that, since all 
saturation states (all K,) are coupled together, the final formu- 
las and the associated iteration scheme will be more compli- 
cated than in the S-C or AS-C theories. 

To implement these ideas, consider a Biot-Consistent model 
of a rock containing a substantial equant porosity and a sub- 
stantial crack density, all interconnected. Following Bu- 
diansky and O’Connell (1980) and the discussion above, this 
model is solved with a combination of results from the associ- 
ated canonicai problems

C(p/)=G, 
Q, 

1 ---&E 1 l-h, ’ (164 

and 

UW 

Compare with equations (8) and (9) and with equations (12) 
and (13). The explicit argument here is taken as pf, rather 
than the (equivalent) argument K, emphasized earlier. The 
model parameters above are defined in terms of the Poisson’s 
ratio of the Biot canonical medium (subscript B): 

fjB&s!! 
1.5 l-v,’ 

(1 + vs) 
aB=3(1- 

B 
B 

~ 32 (I - vsxs - vg) 
45 (2 - va) ’ 

16 1-v; 
A,r----- 

9 (1 - 2v,)’ 

and 

1 - 2G,,f3K, 

“’ = 2 + 2G,/3K, 

(16~) 

(164 

(16g) 

It is obvious that these model parameters are dependent upon 
pr or K,, although the explicit display of the argument is 
omitted for brevity. Their values at pf = 0 will be denoted 
with an asterisk, e.g., vg = v,(p, = 0), etc. The moduli of the 
canonical Biot medium, with their pf dependences, is, from 
equations (4) and (7), 
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and 

GB(P,) = G, (174 

where 

K,(p/) = KB* - aa 5, 
B 

(17b) 

and 

a, s 1 - K,*/K,, (17c) 

168, = -p/K&/). (17d) 

Combining equation (17b) and (17d), the canonical bulk mod- 
ulus is 

KB(P/) = K, *I[* -aBy]. (17e) 

As discussed, the Biot-consistent model moduli are defined to 
have the same value of pf/p as the surrounding Biot medium. 

In the derivation of the model shear modulus [equation 
(16a)], the quantity c(p,) was the ratio of pure shear stress i6r 
to pure shear strain i6y, with no change in volume, and hence 
no change in fluid pressure pf That is, 

&p / ) = % 
a? p,=o 

= G(p/ = 0) = c’*. (18) 

Hence, the apparent pf dependence in equation (16a) should 
be suppressed by indicating that pr = 0 in the model parame- 
ters b,, B, : 

G(pf) = G(O) = G, 1 - &- - 
( B* 

B;E 
> 

= C?*. (19) 

This is substantially the AS-C argument leading to equation 
(13). However, here it appears not as an ad hoc additional 
assumption, but as a basic requirement of Biot-consistency. 

Now consider the corresponding requirement on the model 
bulk modulus. The fluid pressure increment of the model 
theory is, from Budiansky and O’Connell (1980), 

p/ Kf 
tit/@ 
1 - a, 

-=y 
P K 

(20) 

+ ABE - +p 
>’ 

This may be combined with equation (16b) to yield 

(214 

This expression may also be found directly from a theorem by 
Hill (1963). Rearranging equation (21a), 

A(K,)=K,/[l ++(:- I)!!]. @lb) 

The fluid pressure increment from the Biot theory is, from 
equation (6), 

Using equation (17e) to eliminate K,, this becomes 

(23) 

The two expressions (20) and (23) may be equated, fulfilling 
the second assumption proposed above for the Biot-consistent 
moduli, resulting in a closed expression involving only the 
unknown parameters Kz, vB. However, the result is algebrai- 
cally cumbersome and may be avoided by the equivalent use 
of the Biot expression (23) for p, in the model expression (21) 
for K’, in place of the model pf expression (20). This establishes 
the same Biot-consistency and is easier to implement. 

Finally the third Biot-consistency assumption, as discussed 
above, is 

G=G,. (24) 

All of the necessary elements are now assembled. An iter- 
ation scheme, suitable for calculating the observable un- 
knowns G’, K’ may be defined as follows. 

(1) Choose modulus values (G,, K,) for the solid and 
(K,.) for the fluid, and porosity parameters (4, @p, E) for 
the aggregate. 

(2) Assume a value of vf , the frame Poisson’s ratio of 
the canonical medium. This initial value may be taken 
arbitrarily as that of the solid, or as the model value 
from the NI, S-C or AS-C theory. 

(3) Calculate b,*, Bi using equations (16aHl6c) as 
evaluated at p, = 0. 

(4) Calculate (? = C* using equation (19). 
(5) Using equation (24) for GB = Gi, calculate Ki 

from equation (16g), as evaluated at pf = 0. 
(6) Calculate aB using equation (17~) and the scaled 

fluid pressure increment p,/p using equation (23) [not 
equation (20)]. 

(7) Calculate I?(p,) using equation (21b), and KB(p,) 
using equation (17e). 

(8) Calculate v,(p,) using G,, KB(pf) in equation 
(16g), then aB (pf) and AB (pf) using equations (16d-f). 

(9) Calculate 7mK(p,) using equation (16b). 
(10) Compare the values of I?(p/), as calculated in 

steps (7) and (9); if they do not agree with sufficient 
accuracy, then adjust vi and iterate through steps (3t 

(10) until convergence is achieved. 

In this iteration scheme, the unsaturated model bulk modu- 
lus is completely decoupled. It may be found, after conver- 
gence, from 

where af and Ai are found using equation (16g), as evaluated 
at p, = 0. 

I emphasize that this procedure is valid for modeling the 
elasticity of rocks at low (seismic) frequency. The extension of 
these concepts to include high-frequency effects, involving 
both nonlocal and local (non-Biot) flow of pore fluid will be 
the subject of another paper. 
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NUMERICAL EXAMPLES 

In any comparison of model theory with actual data, messy 
questions may arise concerning whether the actual material 
conforms to the model assumptions (e.g., are the pores really 
spherical? are the grains really isotropic?). Such questions are, 
of course, avoided in comparing theories containing identical 
assumptions. To concentrate on the internal consistency of 
implementation of these common assumptions, only the latter 
comparison is performed here. 

Figure 3 shows the shear modulus for a model limestone 
containing 20 percent equant porosity and a large range of 
crack densities. The shear modulus G’ is calculated with the 
three model theories (NI, AS-C, and Biot-Consistent); each 
predicts that f? should be independent of fluid modulus K,. 
All three theories agree at small +I and small E; their evident 
disagreement at E = 0 is a result of the substantial background 
equant porosity (20 percent). (The NI theory is extended here 
past its range of strict validity.) The values of G from the AS-C 
and the B-C theories are almost identical, as a result of the 
assumptions of the two formalisms discussed above. 

Figure 4 shows the bulk modulus K’ for the same model, 
with the same parameters, for the same three model theories. 
This time there are two curves for each theory [one for gas 
saturation, (“dry”; K, = 0), and one for brine saturation, 
(K, = .3 Mpsi)]. With the B-C theory as formulated here, the 
saturated bulk modulus is almost identical to that of the AS-C 
theory, at all K, and all E. The differences between B-C theory 
and AS-C theory are, in effect, concentrated on 8*, the un- 
saturated bulk modulus. In this example, x*(B-C) is every- 
where less than R*(AS-C), except at zero crack density where 
the two are analytically identical. The difference K”-Z? * is sub- 
stantially smaller in the AS-C model than in the B-C model- 
roughly 40 percent smaller at the larger crack densities. It is 
this difference which is critical for bright-spot analysis, and of 
course the B-C theory is correct on this point (cf., Figures 1, 2 
and accompanying discussion for comparison to data). (Fur- 
ther, this difference is unaffected by the arbitrariness in formu- 
lation of the B-C moduli.) 

The values of K,(pf), the canonical Biot medium as the B-C 
theory, are not shown since they are not observable; by calcu- 
lation they are somewhat larger than the corresponding ob- 
servable B-C model quantities I?, particularly in the unsatu- 
rated condition (*). 

As another example, Figure 5 shows a similar calculation 
for a model sandstone. The comparison is shown for the bulk 
moduli only (as in the limestone example of Figure 3, the 
shear moduli from the three theories are similar). Similar re- 
marks apply to the sandstone as to the limestone, although 
the numbers are different. 

CONCLUSIONS 

From the preceding discussion, the 
emerge. 

following conclusions 

(1) The Biot-Gassmann theory of poroelasticity pro- 
vides an adequate description of the dependence of elas- 
tic moduli on pore fluid compressibility, at low (seismic) 
frequencies. A systematic bias in k occurs when this 
low-frequency theory is applied at high (sonic and ultra- 
sonic) frequencies. 

(2) Any model of rock elasticity which shares the 
minimal B-G assumptions about the microstructure of 
the rock must also share the B-G predictions con- 
cerning the dependence of elastic moduli on pore fluid 
compressibility. 

(3) The standard model for a rock containing dilute 
concentrations of pores and/or cracks is consistent with 
B-G in this sense. However, such a model is not valid 
for large porosity or crack density. 

(4) The “Augmented Self-Consistent” model for a 
rock containing substantial concentrations of pores 
and,/or cracks is inconsistent with B-G theory in gener- 
al, although it is consistent for the special case of no 
cracks. Hence, it is not valid except in that special case. 

(5) The “Biot-Consistent” formalism developed here 
is explicitly consistent with the Biot-Gassmann theory 
and not limited to small porosity or crack density. 
Hence, it may be used to model the elasticity of any 
porous rock at seismic frequencies. 

(6) The error incurred in the use of non-B-C models 
is that the difference between saturated and unsaturated 
moduli (the bright-spot effect) is miscalculated. In the 
examples shown, the AS-C theory underestimates this 
difference by up to 40 percent. 
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