Poisson was not a geop

By LEON THOMSEN
Amoco Production Company
Tulsa, Oklahoma

The purpose of this Round Table essay is to argue that Poisson’s
ratio is not relevant to any problem in seismology, and that we
should clear our minds of it, and of the confusion that it entrains.
The reason for its irrelevance is that Poisson’s ratio is defined in
terms of an experiment (axial compression or tension of a thin bar)
which is not relevant to wave propagation (although it may be a
common situation in engineering mechanics). I then extend the ar-
gument (with less certitude) to argue that Poisson’s ratio is not
useful anywhere in exploration geophysics.

First, the seismological argument. Because most of our formal
training in elasticity was heavily influenced by mechanics, we were
all introduced to Poisson’s ratio early, and immediately we were
shown that it was a function of the nondimensional ratio /E (shear
modulus/Young’s modulus). Thus, in recent years, as exploration
seismologists have broadened their paradigm beyond normally in-
cident P-waves, recognizing that the shear properties of rocks were
an aid to exploration, it seemed natural to dust off those old
mechanics texts and resurrect Poisson’s ratio to describe the rela-
tive strength of shear and compressive stiffness.

Of course, shear properties are important in many seismologi-
cal contexts and, of course, the relative magnitude of shear and
compressive stiffness is a useful notion. But, in seismology,
Poisson’s ratio is not a good way to express this relative magnitude.
There is not a single seismological equation where Poisson’s ratio
enters in a natural way. That is, any seismological equation which
appears to involve Poisson’s ratio can be written more compact-
ly, yielding greater physical insight, in terms of other measures
of WE. Most often, the obvious measure is the velocity ratio,
Vp/Vs. The underlying reason, of course, is that seismic waves do
not perform Poisson’s experiment.

Let us return to basics for a moment, in order to clarify con-
cepts, and to see how Poisson’s ratio can lead to misconceptions.
Any introductory mechanics text will show you that, when a thin
cylindrical bar of homogeneous, isotropic, linearly elastic material
is axially squeezed (with free cylindrical surface), then Poisson’s
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ratio, defined as the ratio of radial strain to (negative) longitudinal
strain,

V=-¢glg,

may be expressed in terms of y, E, the bulk modulus K, and the
velocities by any of the following expressions:
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Poisson was the first to discuss these ideas (in Memoire sur
UEquilibre et le Mouvement des Corps Elastiques, published in
1829).

It seems obvious from the original expression, above, that v
could not be less than zero, and everybody knows that it cannot be
greater than'/2. But where do these “‘limits’” come from? It has
been known since Poisson’s epoch that the fundamental require-
ment for stability of an elastic material is that both 4 and K should
be nonnegative. This seems reasonable enough, since only a posi-
tive modulus yields a positive restoring force. A liquid has zero
shear modulus p and hence has Poisson’s ratio Y2 (easily derived
from the above equation involving |4 and K). The other limit of this
expression, zero K, corresponds to v = -1, not to 0! So, materials
with negative Poisson’s ratios are theoretically possible and, in
fact, are observed experimentally (see the article by R. Lakes in
1987). The very small Poisson’s ratio of cork is responsible for its

--utility as a bottle-stopper for wine (note the application of axial

stress in this engineering context). Certain dry rocks, with anomal-
ously low values of ¥} (relative to V5) also produce negative values
of v as calculated from the expression above involving the velocity
ratio (although this negative value may be due to anisotropy). So
much for the intuitive appeal of Poisson’s ratio! S
By contrast, the velocity ratio V/Vs (or its inverse) plays no.
nasty tricks on us. Our intuition is valid: the velocity ratio is nor-.
mally a number close to'2, less for rocks which are quartz-rich, . -
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Figure 1. Poisson’s ratio versus velocity ratio.

or undersaturated, more for rocks which are carbonate-rich or un-
consolidated. Furthermore, because the equation relating Poisson’s
ratio and Vp/V is nonlinear, it is not easy to deduce Vp/Vs (or Vs
itself) from v, especially if v is large (see Figure 1). Why should
one prefer, over such a friendly quantity for understanding seis-
mic phenomena, a nonlinear function of it, like Poisson’s ratio?

One reason may be the historical precedent furnished by an un-
lucky pioneer. Koefoed (in On the effect of Poisson’s ratios of
rock strata on the reflection coefficients of plane waves, Geophys-
ical Prospecting, 1955) first investigated the angle-dependence of
P-wave reflection amplitude (a major component of the Amplitude-
Variation-with-Offset effect) through a systematic application of
the exact P-wave reflectivity formulas. He did so by exploring the
six-dimensional space ( Vpl, Vi, P1, Vo, Vo, Po) of 2 planar contact
between two elastic media with densities p 1, P, etc. He produced
many curves and some general “rules” which did not lead at the
time to significant exploration applications. I will use this episode
to illustrate the point above, that when seismological equations are
written without the use of Poisson’s ratio, greater physical insight
is possible.

The subject of AVO was reborn in the early ’80s and has led
to many applications. Insight into the effect was made possible by
replacing the exact expressions of P-wave reflectivity with ap-
propriate approximations, based on the assertion that for most geo-
physical media,
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where the bars indicate arithmetric averages.

Under these approximations, P.G. Richards and C.W. Frasier
showed (in 1976) that Ry(6) could be written (neglecting terms
involving the squares of the small quantities above) as
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The initial angular variation, critical to AVO analysis, is buried
in the first and third terms of this expression.

In 1985, R. T. Shuey (wishing to shed light on Koefoed’s
“‘rules’’) rewrote the Richards-Frasier expression exactly as

Ry(0) =R, [1 + Asin28 + B tan20sin26 ]

where the normal-incident reflection coefficient is
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Combining these, we have
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It is clear that the introduction of Poisson’s ratio in this expres-
sion has complicated the form of the equation to the point where
physical intuition is threatened. The second (initial slope) term is
a combination of three terms, whose relative size (and sign) is not
obvious without the detailed explanation provided by Shuey.

If, instead of insisting upon the introduction of v, we look for
the simplest, most intuitively revealing version of this expression,
we are led to one implied by J. Wright in 1986:
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The second term now clearly reveals the essential physics behind
the use of AVO to identify hydrocarbon reservoirs. For ordinary
lithologic reflections, the Au/ji part is usually bigger than the
AV,/V), part (for either polarity), hence (with the minus sign) the
slope of R,(6) has algebraic sign opposite to the first (normal-in-
cidence) term and |Rp(9)| decreases initially. However, in the spe-
cial case of a pure contact-event, the Ap part is identically zero
(see M. A. Biot’s classic 1941 article), so that the first and second
terms have the same sign and |R,,(8)] increases initially. Cases with
both a lithologic contrast and a ﬁuids contrast, or cases with exotic
lithologies (e.g., anhydrite), may show either behavior.

Notice that, in this argument, the shear-compression com-
parison appears transparently in the trade-off between AV,/V}, ver-
sus Au/p, whereas it is murky in the previous expression. Also
notice the natural appearance of the velocity ratio in this ex-
pression, where it does not complicate the argument above, but
does shed light on other special cases. Approximations (e.g., those
assuming that ¥,/V; = 2 or that 6 is small or that density is re-
lated to velocity) can sometimes lead to costly errors; because of
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the simplicity of the last expression, such approximations are not
needed.

My point has been to show, by example, how forcing v into
seismological equations invariably complicates them, and con-
versely how their simplest versions usually contain the velocity
ratio. This is a happy circumstance, since few of us have an in-
tuitive feel for the meaning of v, while most of us intuitively un-
derstand V,/Vs. Let us leave Poisson’s ratio to the mechanists, for
whom it was designed, and keep it out of seismology. At the very
least, this policy would save many of us the repeated embarrass-
ment of mispronouncing the name of one of the great figures of
the French Enlightenment!

But exploration geophysics is not all seismology. Another com-
mon context in our business whers Poisson’s ratio often appears
is in the estimation of horizontal stress. A homogeneous isotropic
linearly elastic medium, axially strained, has the ratio of horizon-
tal to vertical effective stress

OH v V, 2
OV 1-v Vp

This expression gives only a rough approximation to actual in-
situ stresses, possibly because rocks are not, in fact, linearly elas-
tic when subjected to such large nonhydrostatic stresses. The use
of the second form above, rather than the first, is helpful in this
regard, because the explicit appearance of the dynamical quantities
(velocities)—in a context of static stress—should shock us into the
realization that we are stretching (so to speak) the limits of the as-
sumed elastic rheology. In this static context, the rejection of Pois-
son 1s based upon the inadequacy of the assumption of linear
elasticity (when applied in real-earth contexts on real rocks) rather
than upon the wave equation.

Furthermore, the appearance of the velocities may also remind
us that, since real rocks have anisotropic seismic velocities, this
expression needs to be generalized for anisotropy. (In 1986, I
showed that in fact the neglected anisotropy correction may
plausibly be comparable in magnitude to the isotropic term given
above).

I conclude that Poisson’s ratio is rarely a useful concept in any
area of exploration geophysics, and invite readers to offer a valid
counter-example.

Suggestions for further reading. General theory of three-dimen-
sional consolidation by M.A. Biot (Journal of Applied Physics,
1941). Scattering of elastic waves from depth-dependent in-
homogeneities by P.G. Richards and C.W. Frasier (GEOPHYSICS,
1976). A simplification of the Zoeppritz equations by R.T. Shuey
(GEOPHYSICS, 1985). Reflections coefficients at pore-fluid contacts
as a function of offset by J. Wright (GEOPHYSICS, 1986). Weak
elastic anisotropy by L. Thomsen (GEOPHYSICS, 1986). Foam
structures with negative Poisson’s ratio by R. Lakes (Science,
1987).1E
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Round Taﬁle i'eply:

Poisson’s ratio revisited

C. Payson Todd
Houston, Texas

I would like to comment on Poisson was not a geophysicist by
Leon Thomsen (7LE, December 1990). Thomsen may have a point
that the ratio Vp/Vs is a slightly more intuitive constant than
Poisson’s ratio. However, the relationship between Vp/Vs and
Poisson’s ratio is straightforward and, in practice, I've found it
possible to move back and forward between the two with rela-
tive ease. I have also found that the most intuitively obvious ex-
pression for reflectivity versus angle is one which uses Poisson’s
ratio. This equation is Fred Hilterman’s approximation of the equa-
tion first published by R.T. Shuey:

R(6) = Ry cos? (6) + 2.25 A v sin? (0)

where Ry is the normal incidence reflectivity and Av is the dif-
ference in Poisson’s ratio across the interface.

Although inaccurate at larger angles, this approximation has
the advantage of expressing R(6) in two physically intuitive terms.

The first term depends solely on R, and decreases in importance
with increasing angle. The:second depends only on Av and in-
creases in importance with increasing angle. I have had more suc-
cess explaining AVO to the uninitiated with this expression than
with any other.

Interested readers should consult Hilterman’s article Is AVO
the seismic signature of lithology? (TLE, June 1990) and A
simplification of the Zoeppritz equations by Shuey (GEOPHYSICS,
1985).

Finally, a comment on the combative tone of the article. The
purpose of scientific papers in general, and TLE articles specifi-
cally, is to educate and enlighten, not condemn and belittle. Un-
fortunately, Poisson was not a geophysicist tends more towards
the latter than the former. When you write for TLE, you write for
an educated and well-intentioned audience. Perhaps, in the future,
authors who are overcome by zeal in their opinions could be
reminded of this by the editors.

Leon Thomsen
Tulsa, Oklahoma

I am happy to see that the “combative tone” of my Round Table
essay has had the desired effect of stimulating discussion among
SEG members. I take the position that such combat, in such a
- forum, does indeed serve to “educate and enlighten” so long as
the combat is between ideas, rather than personalities. I thank
Todd for his response, and hope the following remarks will inter-
est others as well. e
So, to proceed with the combat of ideas: This particular battle
concerns not the general proposition but the specific example of
AVO. First, I take this opportunity to correct my representation
of Shuey’s work; the leading (small-angle) terms should read:
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My previous discussion is unaffected by this correction. Rearrang-
ing without further approximation, we have
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Now it'is clear that if v = 1/3 (V/V; = 2), then the final term
vanishes, and we have Hilterman’s approximation to Shuey’s
result.

But if, instead, v = 1/4 (V,,/V; = 1.732), plausible for quartz-
rich compacted sediments, then the correction terms is

1 A 1
-3 [ o Av + R, + ZVP] sin? 6

Or if, instead, 6 = .437 (Vp/Vs = 3), plausible for young,
undercompacted and/or overpressured sediments (such as those in
Hilterman’s Figures 19 and 20), then the correction term is

AV, .
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In all such cases, the correction to Hilterman’s approximation
may be quite comparable to the retained terms, and neglect of it
may lead to puzzling results, of the type reported by Hilterman.

In assessing the size of the correction, it is necessary to evaluate
the relative size of Av, R,, and AVp/Vp. This evaluation, of course,
depends upon the lithologic contrast across the boundary, the

. porosity contrast, and the pore-fluid contrast. I have been able to

find a clean argument for the interpretation of the AVO slope, in

- terms of these lithologic features, only along the lines (involving

the shear modulus contrast Au/it instead of Av) indicated by my
Round Table essay. I have been able to explain this to the
“uninitiated” by pointing out that this is the same argument,
familiar to them, that distinguishes a gas bright spot from a
lithologic bright spot: “gas-charging a sediment does not affect
its shear modulus”. By contrast, Poisson’s ratio increases both

~ -with gas-charging and with decreasing quartz content, so the in-

terpretation of Av is not clean.

In summary, it is clear that the apparent simplicity of Hil-
terman’s approximation (involving v) to the linearized reflectivity
is due to a further approximation (v = 1/3). Wherever that ap-
proximation fails, reliance upon it can lead to costly error, so the
approximation itself should be avoided. It had originally been
proposed in order to simplify an equation which had previously
been needlessly complicated by the introduction of Poisson’s ratio.
Other formulations, without v, are sufficiently simple so that no
further approximations are required. €
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Poisson was not a rock physicist, either!

LEON THOMSEN
Amoco Exploration and Production Company
Houston, Texas

I 1 “Poisson was not a geophysicist” (TLE, December 1990),
[ argued that Poisson’s ratio is not a useful quantity for analy-
sis in geophysical problems. The primary focus of that article
(and in the subsequent discussion in 7LE, April 199 I) was on
seismic wave propagation, with AVO analysis as the prime
example. I showed that consideration of Poisson’s ratio in-
variably complicates the analysis, which is better conducted
in terms of other relative measures of rigidity-versus-incom-
pressibility (such as V,/V,) which arise more naturally in the
equations of wave propagation.

Towards the end of that discussion, I casually broadened
the scope of topics where Poisson’s ratio could lead to error
or confusion, such as the calculation of horizontal stresses. In
the interest of brevity, I de-emphasized that part of the argu-
ment; perhaps this was unwise.

In fact, recently in these pages, Gretener (October 1994)
and Domenico (September 1995) have initiated a discussion
on this very topic. Gretener argued that Poisson’s ratio is in-
dependent of fluid content in the pore space, and then used
the angle of repose of loose sand (with or without an aquar-
ium) to prove his point. He went on to describe the implica-
tions of this result for the computation of horizontal stress.
Domenico responded that compressibility was indeed a func-
tion of fluid content, and reiterated previous ultrasonic data
to prove hAis point. If the distinguished Professor Poisson had
indeed been a rock physicist, he would probably have wished
the discussion to include the following considerations.

A good starting place is Gretener’s definifion of Poisson’s
ratio. If longitudinal stress is applied to the ends of a long stiff
cylinder with free sides, then the (negative) ratio of the radial
and longitudinal strains is defined to be Poisson’s ratio:

1’?:“—-{ “h } .. ..Poisson’s experiment (1)
£
\\ »

&7

So far, so good. If, in addition, the material is linearly elas-
tic and isotropic, then it obeys Hooke’s law, which says that
strain depends linearly upon stress in the isotropic way. Then
it is elementary to show that the ratio above, expressed in
terms of the rigidity G and incompressibility K is
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.. ..elastic isotropic 2)

thereby expressing Poisson’s ratio in these more general
quantities.
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Separately, the use of Hooke’s law in the wave equation
implies that seismic waves travel with velocities given by

(3)

V.= G/p
L= Glp )

where p is density. Then, we find from equations 2 to 4 (i.e.,
subject to these assumptions) that

(5
....1sotropic elastic,
wave equation
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which appears to express Poisson’s ratio in terms of seismic
velocities.

Finally, a separate application of Hooke’s law to the case
of uniaxial strain (described by Gretener) yields the result he
highlighted and questioned in his final summary:

gJL :,,.‘;.._ﬁf] __Z(V /v )l\J
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The question at issue may now be restated: How can equa-
tion 6 be true if the left side is independent of the fluid con-
tent in the pores (Gratener) while the right side does depend
on fluid content (Domenico)?

It can happen that we deceive ourselves in our use of these
simple equations: the symbols hide the assumptions. The
problem is that Poisson himself only applied them to materi-
als (like iron) which closely approximate his assumptions
(homogeneous isotropic, linearly elastic). By contrast, we
often apply them to rocks (which are anisotropic, inhomoge-
neous, and quasi-poro-elastic instead) to which Hooke's law
is not directly applicable. Unless we are careful, this can get
us into trouble. Let us consider these complications, one at a
time.

In the interest of brevity (probably another mistake!), I
will defer discussion of anisotropy, since this is not what di-
vides Gretener and Domenico (but see my 1986 article in
GEOPHYSICS for a relevant discussion).

Rocks are imperfectly (quasi-) elastic on two counts:

I) For large stresses (such as the static compression ex-
periment described by Domenico), the strains are not re-
versible (i.e., release of stress does not release all the strain),



and they are not linear; hence they are not properly described
by Hooke. In the interest of brevity (!), I de-emphasize this
point, until the end of this note.

2) Even for small stresses (such as the dynamic experi-
ments described by Domenico), the elastic “constants” actu-
ally depend on the fime-scale of the application of stress, e.g.,
on the frequency. (This was mentioned by Gretener with re-
spect to salt, in a context of large stresses.) This frequency-
dependence was discussed at length by Domenico, but I
believe that it is not the crux of the dispute. However, I return
to this issue below.

The rocks of the earth are inhomogeneous on all scales, but
the inhomogeneity which drives this discussion is on the scale
of the grains and pores. This brings us to the crux of the issue:
poro-elasticity. Homogeneous elastic materials are charac-
terized by two field quantities: i.e., the stress and the strain.
Correspondingly, two-component materials (e.g., poro-elas-
tic rocks, containing both grains and fluid) are characterized
by four field quantities, i.e. the stress and strain in both com-
ponents (or equivalently, the average (total) stress, the aver-
age strain, and the stress (the pressure) and strain in the fluid.)
As we will see shortly, the issue which divides Gretener and
Domenico involves the pressure in the fluid, a concept which
is outside Hooke’s law and never considered by Poisson.

However, these elements of poro-elasticity were illumi-
nated by another great francophone, Maurice Biot, in a clas-
sic soil mechanics paper in 1941. This was subsequently
applied to geophysical problems by Gassmann in 195 1 and
eventually by Domenico in 1976. Among other points, they
showed that the stress-strain relations for a poro-elastic
medium also lead, in the wave equation, to the seismic ve-
locities in equations 3 and 4, so long as the symbols K and G
are properly defined. If the rock is compressed by a finite sub-
surface stress, then leaving aside certain complications, these
equations s#ill apply to a seismic wave with small incremen-
tal stress, strain, and pore pressure. For a clear discussion of
Biot’s central idea, with a few equations, see the review con-
tained in my 1985 article in GEOPHYSICS.

However, we don’t need the equations to see the essentials
here. As Biot pointed out, if the pore fluid is free to drain out
of the rock during compression, then the fluid cannot help
support the load and, in fact, the incremental fluid pressure
dPp vanishes. Hence, in such a drained experiment, it
doesn’t matter whether the fluid is liquid or gas, and the ef-

fective elastic “constants” Kjainess Garaineds Varained, €LC. are in-
dependent of fluid content. This explains Gretener’s
thought-experiment, i.e., why the angle of repose of loose
sand in air, or in water, is the same. In both cases, one uses the
drained elastic constants (which depend on the granular
framework only) to calculate the effective Poisson’s ratio,
hence the angle of repose.

By contrast, if the fluid is confined during rock compres-
sion, and cannot escape, then in such an undrained experi-
ment, the fluid does help support the load (to a degree which
depends, among other things, upon its fluid incompressibil-
ity). During the passage of a seismic wave in the earth (or an
ultrasonic wave in the laboratory), the fluid pressure does not
have time to flow away (in response to the pressure transient
dPp(t)); hence such an acoustic experiment measures the
undrained elastic “constants.” K, sqinea 1S larger, and G ugramed
is the same as their drained counterparts (at seismic frequen-
cies); this means (obviously) that Vp/Vs,ugames 1S larger and
(after some thought) that v,,gimeq 1S also larger.

Finally, it is obvious that if the fluid has negligible in-
compressibility, then the drainage conditions do not matter;
in neither case does such a fluid support the load. Hence, a
dynamic, undrained experiment on a gas-bearing rock should
yield the same result for K,G, and v as a static, drained ex-
periment. This explains the first-order equivalence between
curves a and b in Domenico’s Figure 3. (The differences be-
tween these curves are then explicable in terms of the con-
cepts de-emphasized here for brevity).

(When the conditions of fluid pressure drainage are spec-
ified, this reduces the number of field variables from four to
three - stress, strain, and fluid pressure. There are then three
corresponding wave types: the two familiar ones discussed
here, plus the “Biot slow-wave” which need not concern us
here.)

Although it may not be clear from Domenico’s discus-
sion, the static compressibility test (his curve b) was done on
a brine-saturated rock which was free to drain or “express”
the brine (personal communication from A. Frisillo, ex-
Amoco). Also, it should be stated explicitly that his compu-
tation of Poisson’s ratio from these incompressibilities
utilized Biot’s result (implicit in Domenico’s equation 8) that,
at low frequencies, the rigidity G is independent of fluid con-
tent.

In the interest of future brevity, it should be clarified that
Domenico’s references to frequency-dependent “coupling”
of fluid-to-frame encompass three different time-dependent
effects on wave propagation :

1) Macroscopic flow of the fluid (draining, for distances
comparable to an acoustic wavelength) leads (via Biot’s
equations) to a negligible degree of dispersion in most con-
texts:

2) Out-of-phase microscopic flow of the fluid (for dis-
tances comparable to a grain size) leads to the Biot slow
wave, dismissed earlier.

3) In-phase microscopic flow (“squirt”) of the fluid (for
distances comparable to grain size) leads to significant atten-
uation in the ultrasonic band. The modest velocity dispersion
accompanying this “fluid squirt” attenuation is most directly
seen when a very wide band of frequencies (e.g., seismic-to-
sonic) is available for comparison of velocities. This fre-
quency dependence falls into the same class of imperfectly
elastic effects mentioned above; it is nor what drives the pre-
sent dispute.

It is generally agreed that the low-frequency form of Biot’s
equations (with perfect “fluid-frame coupling”, i.e., omitting
all these effects) is sufficient to understand seismic-band
wave propagation, particularly as it involves fluids. By fo-
cusing on the incremental fluid pressure within a rock at seis-
mic frequencies, we see that brine-saturated seismic
velocities are governed by the undrained equations of Biot,
whereas gas-bearing seismic velocities are (approximately)
governed by the drained equations. (A gas at high pressure in
the subsurface will in general have a small but non-negligible
incompressibility, whose effect can be taken into account
using the equations of Biot, Gassmann, and Domenico. Like-
wise, these equations show that a small degree of gas satura-
tion has almost the same effect as full gas saturation.) These
seismic velocities, so understood, may then be used to con-
struct a “seismic Poisson’s ratio” using equation 5, although
(following my 1990/91 argument) this invariably leads to
more complicated seismic equations (for example in AVO
studies), and sometimes to mistaken conclusions.

JULY 1996
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Then where does that leave the rock physicists, who wish
to have a measure of rigidity-versus-incompressibility to
use outside of this narrow seismological context, for
example to calculate horizontal stresses using equation 6? Let
us remind ourselves again that this equation assumes the
material to be elastic. During burial over geologic time, a rock
is subject to diagenetic consolidation, which is decidedly ir-
reversible and nonelastic. So, although the burial deforma-
tion may be uniaxial, it does not follow Hooke’s law of
elasticity.

Nevertheless, we can imagine various thought experi-
ments involving quasi-static unloading and loading of
the consolidated rock which might lead to direct determina-
tion of the horizontal stress, and through equation 6 to an
effective poro-elastic Poisson’s ratio. Leaving aside, for
brevity (1), the considerations mentioned above (anisotropy,
finite stress, time-dependence), let us concentrate on the fluid
effects during such quasi-static experiments, as a guide to
how to avoid such experiments via a seismic experiment
which would determine an effective poro-elastic Poisson’s
ratio for use in equation 6 to estimate the horizontal stress in-
directly.

Perhaps in the interest of brevity, Gretener did not mention
explicitly that when applied to rocks in the subsurface, the
stresses in equation 6 are effective stresses:

Oy = (GhTotal - aPp) (7)

Gv:(GvTaml—aPp) (8)
where the factor a , introduced by Biot, was defined by
Geertsma in 1957, as noted by Domenico. 0,z is the over-
burden stress, obtained, for example, by integrating the den-
sity. Then equation 6 may be written out as:

O hTotal — aPp v
(O ~5y)_ v ©)
(GvTotal - (ZPp) 1-v

The effective stresses, calculated in this way, are the
stresses felt by the granular framework (i.e., the influence of
the fluid pressure is removed). In other words, these effective
stresses are independent of in-situ Pp, hence are representa-
tive of drained conditions. Therefore, in our quasi-static
thought experiments, we should allow the in-situ pore pres-
sure Pp to drain away, and use stresses which are corre-
spondingly smaller (¢f equations 7 and 8) than the total
subsurface stresses.

This analysis has obvious consequences for seismic esti-
mation of an effective Poisson’s ratio for use in equation 9. In
particular, we should use a drained poro-elastic Poisson’s
ratio on the right side, just as we use drained (“efective”)
stresses on the left side. Since the seismic velocities are
undrained quantities, these must be corrected to drained
quantities before being used in equation 9. This correction,
using the equations of Biot, Gassmann, and Domenico, is a
minor correction if the rocks are gas-bearing, but a significant
one if the rocks are brine-saturated.

In the particular case (quartzite) mentioned by Gretener,
one would correct the seismically-derived brine-saturated
undrained Poisson’s 1atio (Vngraines = 0.4) to the drained Pois-
son’s 1atio (Vpaimea = 0.1). Note that this has a drastic effect on
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the calculated ratio of effective stresses (the undrained ratio
is 0.67 and the drained calculation is 0.11). (However, note
that for unconsolidated rocks, more analogous to Gretener’s
sandpack than is quartzite, Poisson’s ratio and velocity ratio,
both undrained and drained, are considerably higher.
Gretener’s calculated Poisson’s ratio of .28 is fully consistent
with seismic values, corrected to drained conditions, on un-
consolidated rocks).

I am not in a position at this time to comment on whether
or not this drainage correction commonly leads to an im-
provement in predicted total stresses. If so, this careful analy-
sis will have been worthwhile.

If not, this analysis will s#ill have been worthwhile, by the
following argument. If we model the stresses using the cor-
rect conditions of fluid-flow, but overly simplistic rheology
(isotropic, linearly elastic) as above, and get the wrong an-
swer, then this erroneous conclusion focuses our attention
(quite properly) on that simplistic rheology. It motivates us to
better understand the physics underlying the observation; in
this way we will eventually make progress. Even if using the
wrong fluid-flow conditions in the calculation should yield a
better estimate for stresses in some particular area, this is
“getting the right answer for the wrong reason,” and such a
success cannot be easily generalized to other places or con-
texts.

A 1994 article by Yale and Jamieson in Rock Mechanics
presents data and discussion on this point. They note that for
their samples, and with their experimental procedures, the
quasi-static measured drained values for Poisson’s ratios co-
incidentally correlated less well with the ultrasonic measured
drained values (calculated assuming isotropic linear elastic-
ity) than with the undrained values calculated from these
using the equations of Biot. That is, the dynamic — static
decrease in Vs due to the large stresses and the long
times in the static test, could be nearly cancelled by an in-
crease, calculated by pretending that the conditions were
undrained. Does this imply that seismically (or sonically) de-
rived Poisson’s ratios should not be corrected down to
drained conditions, as recommended here, for use in estimat-
ing stress?

Probably not. In analyzing their results, we should first
note that their static tests measured Poisson’s ratio itself (the
strains in equation 1), under conditions of triaxial controlled
stress (unfortunately, they did not report measurements of
horizontal stress under uniaxial strain conditions). Since, as
they note, these various physical effects are independent of
each other, in other particular cases the different effects may
cancel to different degrees, so that the observed “coinci-
dence” (their term) is not easy to generalize.

Further, let us consider the nonlinear effects of large
stresses. In rocks, stress-strain curves well below the failure
point are concave, with greater strain requiring dispropor-
tionately greater stress. In other words, the slope (hence the
elastic modulus) increases with increasing stress (the effect
on Poisson’s ratio is less clear, because of experimental diffi-
culties). Yale and Jamieson averaged Poisson’s ratio over cy-
cles with 6,/6,, extending above 4, whereas we expect to find
this effective stress ratio should be much closer to unity (i.e.,
< 2) in the earth’s subsurface. To be most applicable to the de-
termination of subsurface stress, Poisson’s ratio should be
measured in the range of stresses expected there.

More fundamentally, this nonlinear behavior raises the
issue of how to generalize equation 9 (which assumes linear-



ity) to such materials. Can we use some value (v/( 1-v))
which is averaged over some cycle of 6,/0,? Or should we
use only the loading part of the cycle? The unloading part? Or
should we use an aymptotic value near the ambient condition
of 6,/oy, (which, of course, is not known, a priori)? All of these
interesting questions are distorted, or even excluded from
consideration, if we impose incorrect drainage conditions.

So, I summarize the discussion as follows. Seismic veloc-
ities (undrained conditions) are indeed dependent upon fluid
content and, in fact, this is why AVO is interesting to the pe-
troleum industry. (However, this fluid dependence of seismic
behavior really is best understood in terms of V,/V;, rather
than v!)

The independence of Poisson’s ratio from fluid content
(cited by Gretener in his angle-of-repose argument) applies to
drained conditions, whereas the dependence (shown by
Domenico in acoustic experiments) applies to undrained con-
ditions. The equations of poro-elasticity (and the intuitive ar-
gument given above) imply that the effective stress ratio
depends upon the drained elastic “constants.” Hence, when
properly corrected to drained conditions (using the equations
of Biot, Geertsma, and Domenico), seismic velocities can in-
deed be used to estimate effective stresses in a useful way
using equation 9.

However, such estimates of effective stresses from elastic
measurements involve strong assumptions (e.g., perfect lin-
ear isotropic poro-elasticity) which are not necessarily real-
ized in nature. Extending the final summary of Gretener’s
discussion, I write:

10
oy effective

v v
—— < —
I-v drained l-v undrained

={1-2vv,))

The question marks in the above expressions remind us
that the equalities expressed are subject to the critical as-
sumptions of linear isotropic elasticity. Many properties of
real rocks are not included in this simple model; all of these
should be estimated thoughtfully before conclusions are ac-
cepted. The effects of poro-elasticity in isotropic rocks at
seismic frequencies are adequately represented by the cen-
tral inequality, without the question marks.

Finally, the casual use of “Poisson’s ratio” can hide this
complexity of assumptions behind apparently simple nota-
tion, and can easily lead one astray. Rock physicists need to
be precise when extending such classical concepts to more
complex situations, particularly when engaging in multidis-
ciplinary dialog such as this. 6

Acknowledgements: I thank Peter Gretener for initiating
this discussion and Norman Domenico for bringing the arti-
cle by Yale and Jamieson to my attention, and both for en-
couraging my contribution. I thank Mike Mueller and Gerry
Beaudoin (Amoco for useful discussions, and Amoco Explo-
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AV0 and Poisson’s ratio

It remains disturbing that AVO analysts still cling to the
term Poisson’s ratio (see e.g., Dutta, TLE February 2002).

In 1990 (TLE) Leon Thomsen pointed out that it is both
unnecessary and confusing to approach the V,/V ratio (my
PS ratio) by way of Poisson’s ratio. Gretener (TLE, 1994)
showed that it is also erroneous resulting in values that
from a mechanical perspective are unacceptable, if not ludi-
crous. Domenico’s (TLE, 1995) and Thomsen’s (TLE, 1996)
replies remain unconvincing and have never been chal-
lenged. '

The dispute centers on the so-called dynamic determi-
nation of Poisson’s ratio (v,)

vy 2]
Vo= ko, v,y -2]
or 1)

v, v, ={1-v,)112-v)}"?

The original static definition of Poisson’s ratio as given
by Poisson (v,) is:

v,=¢,/¢€, )

where: ¢, lateral strain, ¢, axial strain in a specimen subjected
to uniaxial stress. For linearly elastic materials, such as met-
als, we have:

v, =V, @)

Unfortunately rocks are elastic but not linearly elastic and
thus we have:

V, #V, 4)

Domenico’s value of 0.1 for a dry sandpack (GEOPHYSICS,
1976,1977 and TLE, 1995) and Gregory’s values (GEOPHYSICS,
1976) reaching into the negative realm (sic) make no sense.
The reason: A fundamental assumption of equation (1), lin-
ear elasticity, is not fulfilled. In Poisson’s time, attention was
focused on metals which are linearly elastic.

Poisson’s ratio has been in the AVO literature ever since
the Muskat and Meres paper (GEOPHYSICS, 1940). To aban-
don the term is not devastating to AVO analysis as stated
by Domenico (TLE, 1995). AVO analysts merely use it to
define the PS ratio. The name is irrelevant because it only
represents a mathematical substitution. To retain this name
severely impairs the credibility of AVO analysts as physi-
cists and confuses the dialogue with rock mechanicists.

Bottom line: Use what you really measure (and assume)
and what really matters for AVO—the PS ratio.

—PETER GRETENER
University of Calgary
Calgary, Alberta, Canada

Response from Leon Thomsen:

I, too, am disappointed at the continuing references to
Poisson’s ratio in AVO analysis (although usage does seem
to be shifting slowly toward V,/Vs). However, the short-
comings in the use of Poisson’s ratio are not due to any fail-
ure of linear elasticity (as Gretener states), but rather to the
nonlinear connection between Poisson’s ratio and Vp/V
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(what Gretener dismisses as a “mathematical substitution”),
and the consequent mathematical complications that are
introduced into AVO analysis.

The difficulties that Gretener sees in the computation of
a static Poisson’s ratio from dynamic velocities arise from
a time-dependent aspect of poroelasticity (the difference
between drained and undrained behavior), not from non-
linear elasticity. This was fully explained in the pages of TLE
(Thomsen, 1996), which as Gretener notes, has never been
challenged. If Gretener will explain just why he finds this

explanation is “unconvincing,” perhaps the explanation can
be enhanced.

—LEON THOMSEN
BP
Houston, Texas, U.S.

Response from Peter Gretener:

Thomsen objects to my dismissal of his 1996 paper (TLE)
as “unconvincing”—a decision based on the fact that his final
equation (10) still contains two question marks.

Point No. 1: Thomsen himself alludes to the fact that non-
linear elasticity is the basic problem when he writes: “The prob-
lem is that Poisson himself only applied them to materials (like
iron) which closely approximate his assumptions (homoge-
neous, isotropic, linearly elastic). By contrast, we often apply
them to rocks (which are anisotropic, inhomogeneous, and
quasi-poroelastic instead) to which Hooke’s law is not directly
applicable. Unless we are careful, this can get usinto trouble.”

Point No. 2: It goes without saying that the Gassmann
equation refers to effective stresses. Thomsen contends that
for the rapid pressure pulses of a seismic wave the liquid filled
porous rock acts as a closed system (undrained). This accounts
for the slower rise in velocity with increasing stress as shown
by Domenico (TLE, 1995). The strong difference in V} for the
dry and wet condition, however, results from the replacement
of a low velocity pore filler (gas) by a high velocity pore filler
(liquid) as described by the Time-Average equation. It is caused
by the heterogeneous nature of rocks, a fact incompatible with
linear elasticity. Therefore my equation (4) above stands with-
out any question marks.

Bottom line: We both agree that it is not good practice to
define the PS ratio via the Poisson’s ratio.

—PETER GRETENER

PS. I thank Larry Lines for his patience while acting as sounding board.

Response from Leon Thomsen:

“Inresponse to Point No. 1: In the second part of the (1996)
quote above, the emphasis was not that real rocks differ from
Poisson’s assumption of linear elasticity, but rather that they
differ from his assumptions in other ways. In 1996, T argued
extensively that, although rocks do show nonlinear behavior
in some contexts, the essential seismic issue is their poroelas-
ticity, i.e. the phenomena that arise because of the presence of
both grains and pores.

(Continued on p. 72)
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Dear Editors,

I enjoyed Linda Sternbach’s recent October TLE
“Unsolved mysteries ...” article and agree with most of its
conclusions regarding the seeming lack of widespread inno-
vation adoption over the last 20 years. Having been on the
software services side of the business for the last seven years
I have certainly seen the slow pace of technology adoption
in the market. Upon attending this year’s SEG Annual
Meeting in Salt Lake City, I was surprised to see how slow
the industry appears to be progressing in technology adop-
tion, especially relative to the amount of technology avail-
able.

I do want to share some comments regarding two ques-
tions in this article. Sternbach mentioned that the “inte-
grated geoscientist” emerges only via postcollege cross
training. While this is probably true for the majority of grad-
uates, there are some exceptions. For example, students
graduating from the Masters in Exploration Geophysics
program at Stanford University have taken courses in seis-
mic interpretation, petroleum geology, sedimentary basin
analysis, practical and theoretical well logging, rock physics,
migration, deconvolution, “hands-on” seismic processing,
and supportive courses in petroleum and electrical engi-
neering. As part of the program, all students participate in
industry internships in which they engage in “real life” geo-
physical exploration or exploitation activities. When I started
my professional G&G career with a major oil company after
graduating from Stanford, I hit the ground running with far
more practical seismic interpretation experience than the
majority of my peers. While we need more, there are some
university programs from which integrated geoscientists
emerge ready to take on seismic interpretation challenges.

Regarding the question “Why did automated computer

interpretation stall out?”, I wholeheartedly agree with
Sternbach’s zeroing in on unassigned fault naming as one
of the biggest time wasters in the interpretation process. She
suggests that certain technologies, for example voxel pick-
ing, can help eliminate those types of (what should be)
archaic processes. Short of full volume interpretation, how-
ever, other software solutions help address this issue. For
example, GeoGraphix’s SeisVision application allows the
interpreter to quickly pick faults in any number of arbitrary
views, then view the individual fault segments in a simple
3D visualization environment. In that environment the inter-
preter easily sees which fault segments appear to be part of
the same fault plane and simply assigns them to a given fault
surface. The application tests the topology between the seg-
ments to verify whether the surface is geometrically valid.

This approach allows an interpreter to quickly explore
“what-if” scenarios with various fault geometries. This
process itself helps him /her begin to understand the struc-
tural architecture of the geologic setting rather than strug-
gle with, as you point out in your article, “the cumbersome
interpretation process of drawing unassigned faults and
assigning them names.” (In the interests of full disclosure,
I did work at GeoGraphix from 1995 to 1999).

Again, I thank Linda Sternbach for the stimulating arti-
cle. Looking at the industry demographics published in the
same issue, it is easier to understand why “entrenched work-
flows” are so predominant, and why technology innovation
can be so slowly adopted. Articles like this one drive dis-
cussions that eventually help set us in the right direction.

—RICHARD E. HERRMANN
Denwver, Colorado, U.S.
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(Round Table, from p. 70)

Linearly elastic media are those for which the stress is lin-
early proportional to the strain. Of course, for any material,
at sufficiently large strains, the linear assumption does fail,
but it is poroelasticity that causes the observed seismic depen-
dence of V/V on fluid content. This point is reinforced just
below.

In response to Point No. 2: So, here is the sought-for
enhancement to the previous explanation. We assume linear
behavior (i.e., small strains, as in seismic waves, far from the
source) in an inhomogeneous, poroelastic rock. The undrained
Vpis greater than the drained V, because, in the undrained case,
the stiffness of the fluid contributes to the overall stiffness of
the rock, whereas in the drained case, this does not happen,
because the fluid simply drains away as the overall pressure
increases. (Undrained behavior is seen in seismic experiments,
or in suitably constructed static experiments; drained behav-
ior is seen in very slow dynamic experiments, or in suitably
constructed static experiments.) The amount of stiffening in
the undrained case obviously depends upon the stiffness of the
fluid (there is a formula for this in any mathematical discus-
sion of poroelasticity); a highly incompressible fluid (like
brine) stiffens the undrained response more than does one with
low incompressibility (like gas). In fact, in the limit, a very com-
pressible gas, even if undrained, provides no stiffening at all;
in other words, the undrained formula, for V;, in a rock with
gas in the pores, reduces exactly to that of the drained case.
Hence the undrained/drained argument does, in fact, explain
the fluid-substitution (brine/gas) seismic experiments, and
supports the use of seismic AVO to detect the type of fluid in
the pore space.
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Linearity and inhomogeneity are ot necessarily incom-
patible. In fact, the argument above lies entirely in the realm
of linear mechanics, even though the medium is assumed to be
inhomogeneous. This success of the linear argument is reas-
suring, because the strains in seismic waves (far from the
source) are so small that any nonlinear effects attributed to
them would require an enormous theoretical stretch (to make
up for the miniscule physical stretch!).

On the other hand, as Gretener points out, real rocks do
show a nonlinear response whenever they are subjected to
large strains (in measurements of velocities, for strains larger
than about 10°). When we perform static experiments, usu-
ally the strains are larger than this, so that nonlinear behav-
ior is usually observed, leading to Gretener’s equation (4)
above, which of course is correct, as written.

Excluding cases of large strain, hence remaining in the
realm of linear poroelasticity, we can summarize this extended
discussion as

(VP/VS)dmined = (VP/VS)gas < (VP/VS)brinc = (VP/VS)zmdrained

which indicates (in the middle) that seismic Vp/Vs does
depend upon fluid content (because of the poroelastic argu-
ment). Of course, AVO analysis is complicated by seismic
anisotropy, but that is a separate issue.

Bottom line: Use what you really measure (and assume)
and what really matters for (isotropic) AVO—the PS ratio.
We both agree that it is not good practice to define the PS
ratio via the Poisson’s ratio.

—LEON THOMSEN
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