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Coarse-layer stripping of vertically variable azimuthal
anisotropy from shear-wave data

Leon Thomsen∗, Ilya Tsvankin‡, and Michael C. Mueller∗

ABSTRACT

Alford rotation analysis of 2C × 2C shear-wave data
(two source components, two receiver components) for
azimuthal anisotropy is valid only when the orientation
of that azimuthal anisotropy is invariant with depth.
The Winterstein and Meadows method of layer strip-
ping vertical seismic profiling (VSP) data relaxes this
restriction for coarse-layer variation of the orientation
of the anisotropy. Here we present a tensor generaliza-
tion of the conventional convolutional model of scalar
wave propagation and use it to derive generalizations
of Winterstein and Meadows layer stripping, valid for
2C × 2C data and for the restricted 2C-only case, in the
VSP and reflection contexts. In the 2C × 2C VSP applica-
tion, the result reduces to that of Winterstein and Mead-
ows in the case where both fast and slow shear modes
have the same attenuation and dispersion; otherwise, a
balancing of mode spectra and amplitudes is required.
The 2C × 2C reflection result differs from the 2C × 2C
VSP result since two applications of the mode-balancing
and mode-advance operations are required (since the
waves travel up as well as down). Application to a syn-
thetic data set confirms these results. The 2C × 2C reflec-
tion algorithm enables the exploration for sweet spots of
high fracture intensity ahead of the bit without the re-
strictive assumption that the anisotropy orientation is
depth invariant.

INTRODUCTION

It is well known that the sedimentary crust is usually az-
imuthally anisotropic with respect to the propagation of seis-
mic waves. This is most easily seen in the splitting of vertically
traveling shear waves and is most plausibly caused by oriented
cracks, of dimension much smaller than seismic wavelengths.
The phenomenon is of importance in exploration seismology
because of
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1) its deleterious effects on apparent shear-wave data qual-
ity, often rendering the data uninterpretable for conven-
tional purposes (e.g., lithology discrimination) unless cor-
rected for;

2) its implications for fracture permeability, particularly
within fractured hydrocarbon reservoirs, if the inferred
cracks are sufficiently large and interconnected; and

3) its implications for preferred directions of stress and
hence for prescriptions of well drilling plans which mini-
mize borehole stability problems.

Because of the issue of vector polarization, the discussion of
seismic shear waves can be complicated. Here we discuss the
cases where the input data have

1) one source component and two receiver components, all
effectively horizontal, called 2C, and

2) two source components and two receiver components,
all effectively horizontal called 2C × 2C. This case was
formerly called 4C, but that term has now come to mean
four receiver components (three vector components and
one hydrophone component).

Thomsen (1988) discusses the elements of the phenomemon
of azimuthal anisotropy, including a derivation of the tensor ro-
tation (Alford rotation, cf. Alford, 1986) algorithm of 2C × 2C
shear-wave data into its principal time series, i.e., those two
time series which each contain only one of the two split shear
wave modes (fast and slow). That derivation was restricted to
the case of depth-invariant orientation of azimuthal anisotropy.
While this algorithm has proven to be a useful approximation
despite the restriction (e.g., Willis et al., 1986), one would ob-
viously prefer to relax it (Thomsen et al., 1995a,b; Chaimov
et al., 1995). In fact, in an important contribution, Winterstein
and Meadows (1991a,b) asserted that the earth rarely observes
this restriction.

The problem is that if the orientation of azimuthal anisotropy
varies with depth, then each pure shear mode will, upon en-
countering such a different layer, split into two modes, each
aligned according to the anisotropy in the new layer. As a
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convenient special case for visualizing the process, Figure 1
shows two such layers, each with anisotropy caused by vertical
cracks, aligned differently in each layer. Upon downward trans-
mission through the bottom of the first layer, each shear wave
(split by propagation through the first layer) will split again
into the principal modes of the second layer. Upon reflection,
each of these multiple arrivals will split further at each different
layer on the way up, resulting (if the overburden layer is coarse,
i.e., if it imposes appreciable splitting within the layer) in the
chaotic situation of Figure 1a, with a consequent challenge to
interpretation.

Our work provides a procedure for reducing this chaos to
the interpretable situation in Figure 1b (Alford’s problem),
wherein the variable azimuthal anisotropy in the overburden
has been stripped away, rendering it effectively isotropic, so
that the underlying layer can be analyzed.

Winterstein and Meadows present a technique to relax the
restriction (of uniform orientation of anisotropy) in the ver-
tical seismic profiling (VSP) context, a coarse-layer stripping
technique that is relatively free of strong model assumptions.
Although they do not present a derivation (only a heuristic ar-
gument), their results confirm that the orientation of azimuthal
anisotropy does commonly vary with depth and establish the
importance of being able to correct for this. Lefeuvre et al.
(1992) present a more elaborate, model-driven procedure for
accomplishing the same goal in the same context.

In an expanded abstract, MacBeth et al. (1992) give a terse
presentation of a vector convolutional formalism similar to
that presented here and apply it to the same reflection layer-
stripping problem. Perhaps because of the abbreviated format,
they do not discuss the derivation in a way that exposes its as-
sumptions or restricts its generality.

In this paper, we derive an algorithm for coarse-layer strip-
ping of azimuthal anisotropy from VSP data, which reduces
in the appropriate limit to the algorithm of Winterstein and
Meadows but generalizes it to include different attenuation
between the two shear modes. We also present an algorithm
that is valid for the analogous problem in the reflection context;
this may be seen as an extension of the methods of Winterstein
and Meadows (1991a,b) and of MacBeth et al. (1992) to this
context. Our layer-stripping procedure is based upon a vector
convolution model of seismic propagation, a straightforward
generalization of the scalar convolutional model familiar to
most exploration geophysicists. This formalism in itself should
prove useful in many other contexts.

a) b)

FIG. 1. Coarse-layer stripping of azimuthal anisotropy from
shear data.

We also show variants of both algorithms, valid in principle
for use with two-component data. Such data may be excited, for
example, by a single source-polarization azimuth and received
on two horizontal receiver components. These methods are
much less robust than their four-component counterparts.

Although this work is focused on the exploration context,
in the 1-D approximation described below it is consistent with
the work of Silver and Savage (1994), which relies upon wide-
azimuth 3-D/2C data to accomplish a similar analysis of ver-
tically inhomogeneous anisotropy orientation. As in the VSP
context, Silver and Savage consider a case where the waves
make only one pass through the anisotropic layers rather than
the two passes of a reflection context.

At first glance, this work appears to involve a lot of complex
algebra. However, a closer look reveals that the formulas are
mostly straightforward extensions, accounting for the vector
nature of seismic wave propagation—concepts already familiar
to most exploration geophysicists. We present in the main text
only the essential results of the formalism and apply them to a
synthetic data example.

The derivations are confined to the appendices. Appendix A
gives a generalization of the conventional acoustic convolu-
tional model to vector wave propagation, establishing notation
conventions that are used throughout: lowercase bold charac-
ters denote vectors, tensors are bold capitals, superscripts iden-
tify tensor elements, subscripts indicate the reference coordi-
nate system, and arguments (in parentheses) are propagation
times or rotation angles. Long sequences of tensor operations
trace out (right-to-left) the time history of a set of vector waves.

This notation simplifies considerably the generalization of
scalar convolution to vector convolution. Expanding on this
thought, in the simplest context a scalar convolution of a scalar
function f (t) with a filter h(t) to yield a filtered output g(t) is
commonly denoted

g = h ⊗ f. (1)

If the signal is instead a vector f(t) and the output is also a
vector g(t), then the filter H must, in general, produce each
output vector element as a convolutional combination of both
signal vector elements. If the vectors each have two elements,
then we can write this as

g1(t) = H11(t) ⊗ f1(t) + H12(t) ⊗ f2(t)

g2(t) = H21(t) ⊗ f1(t) + H22(t) ⊗ f2(t).

The filter H is seen to be, in these circumstances, a 2 × 2 matrix.
Further, since the signal and the output are both vectors (i.e.,
if they depend upon a spatial coordinate system such that, with
respect to a new, rotated coordinate system, they transform as
discussed in Appendix A), then the filter must be a tensor (i.e.,
it also transforms under rotation as discussed in Appendix A).
Further, we can write both equations more compactly as

gi =
∑

j

Hi j ⊗ f j i = 1, 2,

where the explicit time dependence is now implicit and the
summation runs over j = 1, 2. Finally, the equation above is
exactly represented by the matrix equation

g = H ⊗ f
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without subscripts. This notation is used throughout this work;
it greatly simplifies the expressions and restores the intuitive
similarity to the scalar equation above.

The formalism as presented is valid for normal incidence on a
sequence of horizontal layers that are azimuthally anisotropic;
generalizations to more complicated situations are obvious in
principle. We consider only the case of coarse-layer variation
of the anisotropy, assuming that the sedimentary section con-
sists of a sequence of horizontal coarse layers, each with its
own uniform orientation of azimuthal anisotropy. In each such
layer, the type of the anisotropy (i.e., the symmetry class) and
its vertical variation are arbitrary as long as the magnitude is
weak (e.g., Thomsen, 1988). Therefore, (1) one may equate the
orthogonal plane-wave polarization vectors with the nearly or-
thogonal polarization vectors for rays from a point source. In
addition, (2) the reflection and transmission matrices defined
below are approximately diagonal. Further, we will approxi-
mate that the transmission coefficients for the fast and slow
shear modes are approximately equal [equation (C-6)].

Assumption 1 is always valid for azimuthally anisotropic me-
dia with a horizontal symmetry plane [including the common
azimuthally anisotropic models: transversely isotropic with
symmetry axis horizontal (HTI) and vertical orthorhombic
(with one symmetry axis vertical)], irrespective of the strength
of anisotropy.

In principle, assumption (2) can be used only for media with
weak azimuthal anisotropy or for media with strong azimuthal
anisotropy whose changes in orientation of anisotropy direc-
tion across the interface are small. However, a synthetic test
shows that these two assumptions can be successfully applied
to a typical moderately anisotropic model with a variation in
the anisotropy direction of 30◦.

It is legitimate to approximate that transmission coefficients
are equal without approximating that the corresponding re-
flection coefficients are equal. We can do this because, in most
cases, the transmission coefficients are close to one, and it does
not matter much just how close to one they are. By contrast, in
most cases the reflection coefficients are small, and it does mat-
ter just how small they are, so we should not (and need not,
according to the mathematics below) approximate that they
are equal.

Appendix B considers the special case of uniform orienta-
tion, showing the reduction to the solution of Alford (1986)
and Thomsen (1988). This should reassure the reader that this
work is simply an extension, to more realistic cases, of a for-
malism whose utility is already well established. Of course, this
extension from the familiar case is not proven by this reduction;
rather, it is established by the logic of Appendix A.

THE VSP ALGORITHM

Appendix C considers the case of a four-component VSP
data set (two orthogonal source orientations; two correspond-
ing receiver orientations) with depth-variable anisotropy ori-
entation. The principal time series Ŝ(t) in the upper layer may
be found by a single Alford (1986) rotation of the observed data
tensor Ŝ0(t) for all arrival times by applying the rotation oper-
ator R(θ1). This transformed tensor S1(t) is physically the same
data but is expressed in the coordinate system aligned with the
anisotropy in this layer 1. The rotation analysis also yields the
angle of orientation θ1 of the top layer anisotropy with respect
to the survey coordinates and the total one-way mode delay

1t1 ≡ ts
1 − t f

1 of the layer 1 pure-mode 22 component through
that layer [following the methods of Alford (1986), Thomsen
(1988), and Winterstein and Meadows (1991a,b)]. The angle θ1

is that angle which best minimizes the off-diagonal traces of the
data tensor S1(t) in the time window of that layer. The thick-
ness of layer 1 is determined by that time beyond which this
diagonalization criterion cannot be adequately met. Of course,
this is an interpretive decision; the interpreter must select (ei-
ther personally or automatically) that reflection time beyond
which a rotation by angle θ1 fails to adequately minimize the
diagonal traces.

For times corresponding to layer 1, the principal time series
is the rotated data, Ŝ(t) = S1(t). Then we show that in the next
layer the principal time series is given by

ŝ(t) = R(θ2 − θ1)

{ [
S11

1 (t) S12
1 (t + 1t1)

S21
1 (t) S22

1 (t + 1t1)

]

⊗ B1

}
R(θ1 − θ2),

where θ2 is the angle of orientation of the next layer [equa-
tions (C-11) and (C-13)]. This is just a tensor rerotation by
the difference angle (θ2 − θ1) of the data matrix S1(t), layer
stripped. The recipe for layer stripping the data is shown above
within the braces; one merely time shifts the second column
(corresponding to the source aligned with the slow polariza-
tion) forward in time by the amount of the delay 1t1 and con-
volves (⊗) with a filter B1 [equation (C-10)] which balances
the effects of differential attenuation of the two modes. This
recipe was originally presented by Winterstein and Meadows
(1991a,b), without derivation, and with the implicit assumption
that mode balancing is not necessary.

The rotated data matrix S1(t) is aligned with the coordinates
of layer 1; only the waves recorded on the traces in the second
column of the tensor in square brackets have passed through
layer 1 as slow modes, so these alone are time shifted. The
fact that this is the correct procedure can be seen intuitively
by realizing that the layer 1 rotated data (before stripping) are
just the data that would have been excited by physical sources
aligned with the layer 1 axes and recorded by receivers also so
aligned (Winterstein and Meadows, 1991a,b). Obviously then,
the two traces from the source aligned with the layer 1 slow
direction are the only ones that need be time shifted; these are
in column 2 above.

The mode-balancing filter B1 may be derived, for example,
by wavelet extraction (using any method of choice) from the
layer 1 time window of S11

1 (t), doing the same independently
for S22

1 (t) and finding the shaping filter that converts the second
into the first. If mode balancing is necessary, but not performed,
this leaves differential layer 1 propagation effects in the ampli-
tudes and wave-forms for subsequent times, perhaps leading to
puzzling results and spurious complexity for subsequent layers.
Evidence from laboratory studies (Sondergeld and Rai, 1992)
suggests this is a common circumstance, with the slow mode
usually having the greater attenuation.

As with layer 1, the angle (θ2 − θ1) in the expression above
is selected as that angle which best minimizes the off-diagonal
traces of the layer-stripped data tensor in the time window
corresponding to layer 2. The mode delay 1t2 in the second
layer can be determined by methods previously discussed. The
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process may be iterated indefinitely, keeping in mind that errors
may accumulate.

THE REFLECTION ALGORITHM

In the case of a 2C × 2C reflection data set, we show in Ap-
pendix D that, as above, the anisotropy in the upper layer (prin-
cipal time series, orientation angle θ1, and total two-way mode
delay 21t1) may be found by a single Alford rotation. Then we
show that the principal time series of the next layer is given by
[equations (D-7) and (D-9)]

ŝ(t) = R(θ2 − θ1)

{
B1 ⊗

[
S11

1 (t) S12
1 (t + 1t1)

S21
1 (t + 1t1) S22

1 (t + 21t1)

]

⊗ B1

}
R(θ1 − θ2).

This is just a tensor rerotation by the angle (θ2 − θ1) of the
reflection data matrix S1, layer stripped. The recipe for layer
stripping the data is shown within the braces: one time shifts
the slow 22 trace forward in time by the amount of the two-way
delay 21t1; time shifts the off-diagonal traces by half as much,
i.e., by the one-way delay; and then model balances, as shown
above.

This detail in time shifting is the principal difference be-
tween the VSP algorithm described earlier and the present
reflection algorithm. Physically, it arises because each of these
off-diagonal arrivals has travelled only one way (either up or
down) through layer 1 as a layer 1 fast mode or the other way
as a layer 1 slow mode. By contrast, the 22 arrivals have trav-
elled both ways in layer 1 as layer 1 slow modes, so they receive
the full two-way delay. Of course, this difference in the layer-
stripping recipe between VSP and reflection contexts follows
directly from the fundamental difference in geometry of the
two experiments.

As with the VSP algorithm, mode balancing is important if
in fact the two modes have different attenuation. In this case,
the filter B1 converts the layer-1 22 wavelet into the 11 wavelet
when applied to the former twice, as shown above. (To avoid
the assumption of equal reflection coefficients, the two wavelets
should be normalized in the time domain on the basis of peak
amplitude or area under primary lobe before their spectra are
equalized.) As with layer 1, the angle (θ2 − θ1) is the angle
that best minimizes the off-diagonal traces of the layer-stripped
data tensor in the time window corresponding to layer 2. The
process may be iterated indefinitely, keeping in mind that errors
may accumulate.

MacBeth et al. (1992) present a terse algorithm for layer
stripping which has many points in common with the present
work. In particular, it appears to implicitly contain the time-
shifting part of the result above, although this is not shown
explicitly. It differs in two respects. First, they recommend solv-
ing for layer-1 attributes by using the linear transform proce-
dure developed by Li and Crampin (1993), even though under
the special conditions which they require for layer stripping
this procedure reduces identically to Alford rotation. Here, we
maintain consistency by using the rotations implied by the for-
malism to solve for the layer attributes. Second, they assume
implicity that mode balancing is not required.

These 2C × 2C (VSP and reflection context) algorithms are
essentially geometric in nature; they are robust because they
involve principally a geometric (tensor) rotation and strategic
static shifts. It is worth noting that Alford’s original procedure
consists of a robust mathematical operation (tensor rotation)
followed by an interpretation identifying the angle θ1. It is be-
cause the interpretation follows the mathematical operation,
rather than precedes it in the form of detailed modeling as-
sumptions, that the procedure has proven to be so useful and
reliable. The present generalization shares this characteristic
(albeit with more complexity, befitting the more complex phys-
ical situation).

Appendix E gives corresponding derivations for the 2C case
of a single source orientation and two receiver orientations
for both VSP and reflection contexts. To strip a layer of its
anisotropy requires the separation of the fast and slow modes
onto different traces; hence, we need in principle only to have
at least two components of receiver (or source) in a layer to
be stripped. However, both VSP and reflection 2C algorithms
involve much more complexity than simple rotations and de-
terministic filters, as above, and may not be practical for real
data. The reason is that, unlike the 2C × 2C algorithms, the 2C
algorithms are dynamic in nature rather than geometric and
require more elaborate assumptions.

One potentially promising application of our method to 2C
data is the case of converted reflections, wherein the effec-
tive (in-line) source of the shear waves is the P-wave incident
upon each of the conversion points at depth, rather than at
the surface, and the 2C receivers are located at the surface (a
reverse VSP geometry). However, a detailed discussion of this
converted-wave case is outside the scope of this paper.

A SYNTHETIC EXAMPLE

The most important application of the formalism presented
in the Appendices is arguably the result [equation (D-9)] for
reflection layer stripping. Below are modeling results for a re-
flection situation wherein the anisotropic effects are particu-
larly strong.

The model is that of the normal incidence of shear waves
upon a thick (750-m) uniform azimuthally anisotropic clastic
sequence overlying an anisotropic coal-bed sequence. The coal-
bed sequence consists of 40 thin coal beds (cumulative thick-
ness <100 m) scattered aperiodically through an interval of
530 m, interbedded with the overburden clastics. Because the
half-space reflection coefficient between the coal and the clas-
tics is so strong (∼50%), there is substantial reflection at each
coal-bed sequence internal interface. This results in a compli-
cated reverberation within the coal-bed sequence which leads
to comb filtering with the loss of high frequencies, as with
P-waves in such a medium. In addition, since the coal is az-
imuthally anisotropic, each of the principal components (fast
and slow) of this reverberation is progressively out of phase
with the other, so that the composite waveforms are quite com-
plicated. This model thus presents a stringent test of the algo-
rithms derived in the Appendices.

Figure 2 shows synthetic seismograms for the base-line case
where the clastic overburden is isotropic and the survey coor-
dinate system is aligned with the principal coordinate system
of the anisotropic coals. The synthetic seismograms were cal-
culated using the reflectivity algorithm discussed by Garmany
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(1983). The coal beds have HTI, with shear-wave anisotropy
coefficient γ = 20%; the interbedding clastics are isotropic. Be-
cause the survey coordinate system is aligned with the principal
coordinate system of the coal-bed sequence, no energy appears
on the mismatched traces (12 and 21). Since the overburden
here is isotropic, both arrivals 11 and 22 begin at the same
time. Hence, this result appears on casual inspection to show
only isotropic response.

However, close inspection of the in-line/in-line (11) and
cross-line/cross-line (22) traces reveals that they differ in their
details. This is a result of the anisotropy, i.e., of the differences
in reflectivities and velocities for the two pure modes polar-
ized orthogonally. Because these two waveforms are not the
same in their details, it is not possible to easily define a time
delay between them or to characterize one as fast and the other
as slow. Nonetheless, the anisotropy is clear if we consider in-
stead acquisition with the survey axes oriented at 45◦ to the
principal axes of the coal (Figure 3). Here, the finite energy
on the mismatched components is a sensitive indicator of the
presence of azimuthal anisotropy (Alford, 1986). (In Alford’s
examples, such energy is an indicator of anisotropy in the over-
burden; here, it is an indicator of anisotropy within the coal-bed
sequence.)

In Figure 4, we see the results of modeling a case with verti-
cal variation of azimuthal anisotropy orientation, the focus of
this work. The principal axes of anisotropy in the overburden
are oriented at an angle of 30◦ with respect to the principal
axes in the coal-bed sequence. The strength of the overbur-
den anisotropy is γ = 2%; this degree of anisotropy is a typical
background value, while the stronger anisotropy (20%) in the
coal-bed sequence is plausible for fractured reservoirs. As a
pedagogical device, the synthetic survey line in Figure 4 is ori-
ented at −30◦ from this overburden coordinate system, parallel
to the coordinate system of the underlying coal and identical
to the survey coordinates of Figure 2. The difference between
Figure 2 (isotropic overburden) and Figure 4 (anisotropic over-

FIG. 2. Isotropic overburden; the survey 1 direction is aligned
with the fast direction of the underlying coals.

burden) is evident most notably in the nonzero energy on the
mismatched traces.

Following the present algorithm, the analysis to character-
ize this vertically variable anisotropy proceeds as follows. A
sequence of tensor rotations defines the anisotropy (time de-
lay and orientation) of the upper layer, with the optimal rota-
tion angle selected as the angle that minimizes the energy on
the mismatched traces in the time window of the upper layer
(defined operationally). Automatic procedures must be quite
sophisticated to determine both of these (the proper angle and
the thickness of the layer to which it applies) simultaneously;
however, a human interpreter can do this easily.

For example, an angle of 20◦ (Figure 5) does not quite ex-
tinguish the leading reflection from the coal-bed sequence on

FIG. 3. Isotropic overburden; the survey 1 direction is aligned
+45◦ from the fast direction of the underlying coals, i.e., from
that of Figure 1.

FIG. 4. Anisotropic overburden; the survey 1 direction is
aligned (as in Figure 2) with the fast direction of the under-
lying coals, i.e., at −30◦ to that of the overburden.
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the mismatched traces, whereas an angle of 30◦ (Figure 6) does
extinguish it. No angle extinguishes the mismatched energy
within the coal-bed sequence itself, thus establishing that its
anisotropy has a different orientation. This logic determines
the orientation of the anisotropy axes of the upper layer rela-
tive to the survey line and its thickness. The total delay (10 ms
in this example) is determined by crosscorrelation of traces 11
and 22, including only the first part of the coal-bed sequence
reflection in the correlation window.

FIG. 5. Anisotropic overburden; the rotated 1 direction is
aligned +20◦ from the survey direction of Figure 4, i.e., not
quite aligned with the fast direction of the overburden.

FIG. 6. Anisotropic overburden; the rotated 1 direction is
aligned +30◦ from the survey direction of Figure 4, i.e., ex-
actly aligned with the fast direction of the overburden. Note
null mismatched traces in the time window of the upper layer
at the arrow.

With the anistropy of the upper layer determined, that
anisotropy is stripped, following the recipe in equation (D-7).
Trace 22 is shifted up by 10 ms, and traces 12 and 21 are shifted
up by 5 ms. Since this model was perfectly elastic, no mode bal-
ancing was required. Subsequent tensor rotations determine
that an angle of −30◦ (Figure 7) extinguishes the energy com-
pletely on the mismatched traces within the coal-bed sequence
time window. This determines the orientation of the anisotropy
within the coal-bed sequence. Its magnitude (i.e., its total time
delay) is determined using the methods (in this coal-bed se-
quence case) of Thomsen et al. (1995b).

Figure 7 (with the anisotropy of the upper layer removed
and aligned with the principal coordinate system of the coal)
can be compared with Figure 2 (which was similarly aligned
and which never had any overburden anisotropy in the first
place). The two are almost identical. This proves, via direct
forward modeling, that the present algorithm for anisotropic
layer stripping of 2C × 2C reflection data is correct. Since the
same formalism is used in the other contexts (VSP, 2C), their
validity is thereby strongly supported.

APPLICATION TO REAL DATA

Although one never knows exactly the ground truth in any
application to real data, these methods have been used with
success in a similar (coal-bed sequence) context by Chaimov
et al. (1995). In that case, verification of accurate coal-bed se-
quence anisotropy was confirmed by production figures: the
well with the greater inferred seismic anisotropy had greater
inferred intensity of fracture and an observed production rate
four times higher than the other. In this connection, the com-
pletions were identical in the two wells and the conventional
log responses were very similar, so that one could straightfor-
wardly conclude that the difference in production was from the

FIG. 7. Anisotropic overburden; after stripping off the ani-
sotropy of the overburden, the rerotated (by −30◦) 1 direction
is aligned again with the survey direction of Figure 4. These
traces are virtually identical to those of Figure 2.
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presence of fractures in the productive well not visible by these
other measures. (In Chaimov’s cases, however, the overburden
anisotropy was aligned with the coal-bed sequence anisotropy,
with good precision, so these real data did not fully test the
present algorithm in its most general form).

In real reflection data, stacked traces are commonly used as
a surrogate for noise-reduced normal incidence traces. More
than ten years into the era of azimuthally anisotropic explo-
ration seismology, it is still not well understood why, and under
what restrictive circumstances, this is such a good approxima-
tion. Hence, in any discussion with real data, this issue should
be kept in mind.

DISCUSSION

To the extent that seismic data may be interpreted in terms
of azimuthal anisotropy of the subsurface rocks, geophysicists
hold a significant new tool for the exploration for hydrocar-
bons. Regardless of the cause of the anisotropy, better S-wave
images result from correcting for it and better lithologic and
other inferences therefore follow. If the inferred azimuthal
anisotropy can be attributed to the presence of oriented frac-
tures at the reservoir level, these fractures may provide ori-
ented avenues of enhanced permeability, with obvious implica-
tions for the economic production of hydrocarbons from those
zones. If the inferred azimuthal anisotropy can be attributed
to the alignment of anisotropic stresses, then delineation of
such anisotropy may be important even for successful drilling
to reach the target zone.

To apply this new tool broadly, it is important to relax the as-
sumption of vertical uniformity in orientation of the anisotropy
[Alford (1986), Thomsen (1988)]; this is a primary result of
the present analysis. Because of the significant implications,
a detailed discussion of the algorithm is warranted, including
specific comparisons with the previous literature.

Winterstein and Meadows (1991a,b) claim their VSP layer-
stripping algorithm was also valid for the reflection context,
whereas we present a different algorithm. Because of these dif-
ferences in conclusions, it is important to discuss carefully the
logic and evidence that lead to each. In the first place, Winter-
stein and Meadows give no derivation of their algorithm, sim-
ply presenting their layer-stripping recipe heuristically. With-
out a derivation such as that given here, their conclusions are
obviously open to conventional criticism. Further, they do not
present synthetic modeling results, so the claim for validity of
their VSP algorithm rests on comparisons with real data, for
which the ground truth is unknown.

As stated clearly by Winterstein and Meadows (1991a,b),
asymmetry of the VSP data tensor (i.e., inequality of mis-
matched traces 12 and 21) is a convincing indication of multiple
splitting, i.e., of vertical variation of anisotropy orientation
in contexts where multipathing is not plausible. Hence, we
can agree that their raw data indicate the occurrence of such
variation.

In the reflection context as opposed to the VSP context,
the data tensor is more commonly symmetric, with or with-
out multiple splitting. This is a consequence of the reciprocity
theorem (Knopoff and Gangi, 1959), which states that the dis-
placements are the same if the (vector) source and receiver
are interchanged. In the normal-incidence reflection context,
the source and receiver are at the same place, so interchang-
ing source and receiver means interchanging components, i.e.,
12 <-> 21. Hence, the reflection data tensor must be symmet-

ric, regardless of anisotropy or its distribution in space. (In
practice, the minor departures from this condition are usually
because the data are stacked traces, i.e., the result of a calcula-
tion, rather than actual normal-incidence traces.)

Winterstein and Meadows (1991a,b) do not present data in
support of the claim that their algorithm is valid for reflection
data as well as VSP data but offer two arguments with the
conclusion that in practice it might work less well. Their first
argument is that the S/N ratios for reflection data are much
smaller than for VSP first arrivals. This is true, but in prac-
tice the data are usually of sufficient quality that meaningful
analyses may be made.

Their second argument recognizes that reflection data only
provide traveltime and amplitude information at times corre-
sponding to arrivals from strong reflectors and that the putative
horizons separating coarse layers of uniform anisotropy need
not correspond precisely to these reflective horizons. Hence,
a reflection from well beneath a horizon of little reflectivity
but significant anisotropy change would arrive at the receiver
already split by this invisible interval.

Such a situation could clearly pose a major complication for
the present algorithm. But the consequences of such a separa-
tion need not be catastrophic. They clearly depend upon the
amount of such prior resplitting (i.e., the time delay between
the resplit rays, which is accrued prior to reaching the reflec-
tor). That is to say, they depend upon the amount of anisotropy
and the separation between the horizon of anisotropy change
and the reflector. The consequences grow gradually (i.e., lin-
early) with increasing separation rather than discontinuously.
So, if the anisotropy is typical of background values (1–2%),
then a significant separation may be tolerable. By contrast, if
the anisotropy is much greater, as in a fractured reservoir, the
allowed separation would be much smaller. We think that ap-
plication of the present algorithm to many data sets will be the
best way to determine how commonly its assumptions are met
in the real world.

Finally, MacBeth et al. (1992) present a similar formalism,
from which some of these conclusions could be found; we prefer
the present algorithm on grounds of internal consistency and
clarity of assumptions, leading to the application, where neces-
sary, of the mode-balancing operations indicated in equations
(44) and (54) in that paper.

In conclusion, we present a tensor generalization, to the
anisotropic multicomponent case, of the familiar scalar con-
volutional model of seismic wave propagation. This formalism
enables the derivation of algorithms for coarse-layer stripping
of vertical variation of azimuthal anisotropy from multiple-
component (2C and 2C × 2C) shear-wave data sets in both
the VSP and reflection contexts. These algorithms generalize
that presented by Winterstein and Meadows (1991a,b) for the
2C × 2C VSP context to include differential transmission and
attenuation effects for the two shear modes, differ significantly
for the 2C × 2C reflection context from that of Winterstein and
Meadows (1991a,b), generalize the similar 2C × 2C reflection
algorithm of MacBeth et al. (1992) in the same way, and in-
dicate considerably more complexity and instability in the 2C
cases. Synthetic models demonstrate the validity of the present
reflection algorithm.

These algorithms follow Winterstein and Meadows’s general
logical path and effectively remove an important limitation of
Alford’s rotation method for anisotropic analysis—namely, the
vertical invariance of orientation of the anisotropy.
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APPENDIX A

THE VECTOR CONVOLUTIONAL MODEL OF SEISMIC PROPAGATION

We derive here expressions for the principal time series, i.e.,
for the pure modes (fast and slow) of shear-wave propagation
in this coarse-layer, normal-incidence context. We follow the
progress of a ray traveling vertically downward through a stack
of layers with variable orientation of azimuthal anisotropy, as
in Figure 1. The wave particle motion si (t) starts (t = 0) at the
surface as a vector (referred to a coordinate system identified
by subscript i ):

s0(0) = w(t)s0, (A-1)

where w(t) is the wavelet (assumed the same for each vector
component and s0 is the vector source. For example, an in-line
source pointing in the direction of the +x-axis is denoted

s0 = sx =
[

s

0

]
,

where s is the source strength (a scalar). (We write a vector
in column format rather than row format since we will be
sequentially multiplying from the left with matrices, and this
convention makes full use of the conventional matrix algebra
notation.) In terms of the principal coordinate system of the
downgoing ray in layer 1 (i.e., that system aligned with the
layer-1 orthogonal eigenvectors for vertical propagation), this
same physical vector is

s1 = R(θ1)s0, (A-2)

where R(θ1) is the rotation matrix for transforming the sur-
vey system of coordinates into this principal coordinate system

(subscript 1):

R(θ1) =
[

cos θ1 sin θ1

−sin θ1 cos θ1

]
. (A-3)

In the special case of Figure 1, θ1 is taken as the clockwise an-
gle between the +x-direction and the strike of the cracks in
the top layer. The signs are important: if +x points north and
the top cracks strike at N45W as shown, then θ1 = −45◦ or,
equivalently, +135◦.

In terms of the new coordinates, the vector wavefield of equa-
tion (A-1) is

s1(0) = w(t)s1 = R(θ1)w(t)s0. (A-4)

We rotate to the layer-1 coordinate system because of its
special properties; each separate component of s1(t) travels as
a pure mode with its own velocity (which is not true for the
components of s0(t)). Hence, at the bottom of layer 1 (at time
t1), the wavefield may be written as

s1(t1) = P1 ⊗ s1(0) (A-5)

where the symbol ⊗ denotes convolution and the propagator
operator is diagonal:

P1 =
[

Af
1 ⊗ δ

(
t − t f

1

)
0

0 As
1 ⊗ δ

(
t − ts

1

)
]

. (A-6)

Af
1 is a filter accounting for geometric spreading, attenuation,

dispersion, etc., for the fast component, and t f
1 = z1/v

f
1 is its

one-way traveltime. As
1 and ts

1 are the corresponding quantities
for the slow component.
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At the top of layer 2 (at time t1+ an infinitesimal increment)
but still in terms of layer-1 coordinates, the transmitted wave-
field may be written as

s1(t1+) = T1s1(t1), (A-7)

where the layer 1 → 2 (downward) transmission coefficient ma-
trix at normal incidence is

T1 =
[

T11
1 T12

1

T21
1 T22

1

]
. (A-8)

For most cases, T12
1 and T21

1 will be negligible, so that T1 is
diagonal; we assume this in the following.

At the same physical place, but in terms of the principal co-
ordinate system of layer 2, this physical wavefield is

s2(t1+) = R(θ2 − θ1)s1(t1+). (A-9)

In this new coordinate system (subscript 2), each component
contains rotationally weighted wavelets from both fast and
slow waves from layer 1 (the slow ones delayed by 1t1 ≡
ts
1 − t f

1 ). But these new components again each travel as pure
modes in layer 2, albeit with complicated signatures. After
propagating down through layer 2, the wavefield is

s2(t1 + t2) = P2 ⊗ s2(t1+), (A-10)

where the propagation operator is [equation (A-6)]

P2 =
[

Af
2 ⊗ δ

(
t − t f

2

)
0

0 As
2 ⊗ δ

(
t − ts

2

)
]

. (A-11)

Suppose this wavefield is incident upon a downhole receiver
with two horizontal components, which for simplicity we as-
sume to be oriented along the survey directions. Hence, it will
receive the signal

s0(t1 + t2) = R(−θ2)s2(t1 + t2). (A-12)

Assembling all these operations from equation (A-1) through
equation (A-12) (preserving the order, since matrix multipli-
cation does not commute), we have

s0(t1 + t2) = R(−θ2)P2 ⊗ R(θ2 − θ1)T1P1

⊗ R(θ1)w(t)s0. (A-13)

Note in this linear algebra formulation of the problem that ma-
trix multiplication is associative, although it is not commutive.
That is, for matrices,

ABC = A(BC) = (AB)C 6= BAC.

The single vector equation (A-12) is a compact way of writing
two coupled equations for the two received vector components.
Now, repeating all this with a second source orientation S0

(same wavelet), we can assemble all four equations compactly
by writing the source vectors and the received time series as
tensors, each column of which is one of the vectors discussed
earlier:

S0(t1 + t2) = R(−θ2)P2 ⊗ R(θ2 − θ1)T1P1

⊗ R(θ1)w(t)S0. (A-14)

For example if the first source is +in-line and the second is
+cross-line and of equal source-strength s, then

S0 =
[

s 0

0 s

]
= sI; (A-15)

we assume this in the following.
To extend these results to the reflection context, we resume

the ray tracing at the bottom of layer 2, i.e., at equation (A-10).
The reflected wavefield at the bottom of layer 2 is

s2(t1 + t2+) = Rs2(t1 + t2), (A-16)

where the reflection coefficient matrix is

R =
[

R11 R12

R21 R22

]
. (A-17)

For most cases, R12 and R21 will be negligible, so that R is di-
agonal; we assume this in the following. We continue the ray
tracing upward following the previous logic so that the surface-
recorded data tensor is

S0(2t1 + 2t2) = 2R(−θ1)P1R(θ1 − θ2)T2P2

⊗ RP2 ⊗ R(θ2 − θ1)T1P1 ⊗ R(θ1)w(t)sI. (A-18)

The value T2 is the transmission coefficient for upward trans-
mission at the bottom of layer 1. The leading factor 2 accounts
for the free-surface interaction.

Also, we note that the expression for rotating a tensor [gen-
eralizing equation (A-2)] is

S1 = R(θ1)S0R(−θ1). (A-19)

This derivation does not assume any particular symmetry of the
media, just normal incidence upon a sequence of coarse layers
of uniform anisotropy orientation. Within each coarse layer,
there may be arbitrary vertical variation of vertical velocities
and of the magnitude of (weak) anisotropy.

APPENDIX B

SPECIAL CASES

Let us consider some special cases to make contact with what
we already know. In particular, we consider the reduction of
the above formulae to the simple case of uniform orientation
of anisotropy. This is the case of Alford (1986) and Thomsen
(1988). In this case, θ2 = θ1 and R(θ2 − θ1) = I, the identity
matrix. This exercise will help us see where we want to go with
the more general cases.

2C ×× 2C VSP case

The VSP case, equation (A-14) reduces to

S0(t1 + t2) = R(−θ1)[P2 ⊗ T1P1 ⊗ sw(t)]R(θ1), (B-1)

where the scalar functions have been commuted into the inte-
rior. The expression in brackets is
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S(t) ≡ [P2 ⊗ T1P1 ⊗ sw(t)] (B-2)

= sT1

[
Af

2 ⊗ δ
(
t − t f

2

) ⊗ Af
1 ⊗ δ

(
t − t f

1

) ⊗ w(t) 0

0 As
2 ⊗ δ

(
t − ts

2

) ⊗ As
1 ⊗ δ

(
t − ts

1

) ⊗ w(t)

]
, (B-3)

which is diagonal because all of its constituent matrices are
diagonal. Since convolutions commute and since

δ
(
t − t f

2

) ⊗ δ
(
t − t f

1

) ⊗ w(t) = δ
(
t − t f

2 − t f
1

) ⊗ w(t)

= w
(
t − t f

2 − t f
1

)
, (B-4)

this is

S(t) ≡ sT1

[
Af

2 ⊗ Af
1 ⊗ w

(
t − t f

2 − t f
1

)
0

0 As
2 ⊗ As

1 ⊗ w
(
t − ts

2 − ts
1

)
]

, (B-5)

which we recognize as the time-delayed pure-mode wavelets
filtered by propagation effects. That is, the components of S(t)
are the principal time series which were to be found.

So, equation (B-1) reads as

S0(t1 + t2) = R(−θ1)S(t)R(θ1), (B-6)

which can be solved by operating from the left with R(θ1)
and from the right with R(−θ1). Since R(−θ1)R(θ1) =
R(θ1)R(−θ1) = I, we have

S(t) = R(θ1)S0(t1 + t2)R(−θ1), (B-7)

which was first noted by Alford (1986) (see also Thomsen,
1988). In words, the principal time series on the left is the
data rotated to the proper angle on the right. In practice, the
angle θ1 above is selected either by the interpreter or by an
automatic procedure to best realize the off-diagonal zeroes of
equation (B-5), i.e., to minimize the energy on the rotated data
traces, the right side of equation (B-7).

2C ×× 2C reflection case

Similarly for the reflection case [the one considered explicitly
by Alford (1986) and Thomsen (1988)], the reflection principal
time series constructed in the same spirit as equation (B-5) but
with different details is

S(t) ≡ 2sT2RT1

[
Af

1 ⊗ Af
2 ⊗ Af

2 ⊗ Af
1 ⊗ w

(
t − 2t f

2 − 2t f
1

)
0

0 As
1 ⊗ As

2 ⊗ As
2 ⊗ As

1 ⊗ w
(
t − 2ts

2 − 2ts
1

)
]

. (B-8)

Following logic very similar to that above, the result is also very
similar:

S(t) = R(θ1)S0(2t1 + 2t2)R(−θ1). (B-9)

It is not required that the propagation filters be equal, nor that
the diagonal reflection coefficients [equation (A-17)] be equal,
nor that the diagonal transmission coefficients [equation (A-8)]
be equal.

2C VSP and reflection cases

Suppose we now have a single source orientation rather than
two. Operating on the VSP equation (A-13) from the left by
R(θ1) and using equation (B-2), we have

R(θ1)s0(t1 + t2) = S(t)R(θ1)s0. (B-10)

If the source is +in-line, then the product on the right is

R(θ1)s0 = R(θ1)
[

s

0

]
= s

[
cos θ1

−sin θ1

]
. (B-11)

Then, multiplying equation (B-10) from the left by[
1/ cos θ1 0

0 −1/ sin θ1

]

leads to the solution (since S(t) is diagonal)

s(t) ≡
[

Af
2 ⊗ T11 Af

1 ⊗ sw
(
t − t f

2 − t f
1

)
As

2 ⊗ T22 As
1 ⊗ sw

(
t − ts

2 − ts
1

)
]

=
[

1/ cos θ1 0

0 −1/ sin θ1

]
R(θ1)s0(t1 + t2),

(B-12)
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which was first derived by Thomsen (1988). In words, the solu-
tion on the left for the principal time series is just the rotated,
rescaled data on the right.

For the reflection case, a similar solution results. Again, it is
not required that the propagation filters be equal, nor that the
diagonal reflection coefficients be equal, nor that the diagonal
transmission coefficients be equal.

In practice, the angle θ1 above is selected, either by inter-
preter or by an automatic procedure, to best realize the crite-
rion that the two components of s(t) should appear as smoothly
stretched and (possibly unsmoothly) scaled versions of one an-
other. An obvious variant can be constructed for a cross-line
source. Converted P–S-waves (after stack) are effectively the

same as the in-line case above. Harrison (1992) provides a de-
tailed rotation algorithm, implementing these principles in an
automatic way, with additional assumptions in the selection
of the angle. Ata and Michelena (1995) show an application to
fracture characterization. Multiple-source/single-receiver con-
figurations may be solved using straightforward extensions of
this formalism.

It is clear that this algorithm is less robust than the 2C × 2C
algorithm because it uses less data. Even so, it may be prefer-
able in practice—for example, in those instances where only
two components are available (e.g., old SH source [sic] data,
converted-wave data, etc.) or when economic restrictions (e.g.,
in 3-D surveys) discourage 2C × 2C acquisition.

APPENDIX C

VSP LAYER-STRIPPING (2C ×× 2C)

Returning to the more general 2C × 2C case of depth-
variable orientation of anisotropy, θ2 6= θ1, we operate on equa-
tion (A-14) from the left with R(θ1) and from the right with
R(−θ1). The left side of the equation becomes the data, ex-
pressed in the coordinates of layer 1 [equation (A-19)], which
we denote as

S1(t1 + t2) ≡ R(θ1)S0(t1 + t2)R(−θ1). (C-1)

The rotated equation (A-14) then reads

S1(t1 + t2) = R(θ1)R(−θ2)P2 ⊗ R(θ2 − θ1)T1P1 ⊗ sw(t)
(C-2)

= R(θ1 − θ2)P2 ⊗ sw(t)R(θ2 − θ1)T1 ⊗ P1

(C-3)

since R(θ1)R(−θ2) = R(θ1 − θ2). The scalar quantities have
been commuted into the interior of this last expression, but
the propagator P1 does not commute. Therefore, the θ2 − θ1

rotation mixes all the components of both fast and slow waves.
Incidentally, this expression demonstrates mathematically why
independent Alford rotation (Alford, 1989) at each time step
does not work; if in fact the orientations did vary at each thin
layer, the result would be a hopeless confusion of rerotated and
delayed components.

Nonetheless, if θ1 is properly chosen (see below), the layer 1
rotated data [equation (C-1)] will have approximately null off-
diagonal components for times <t f

1 . The difficulties caused
by resplitting only arise at times greater than this. Following
Winterstein and Meadows, we can use the significant energy
on the off-diagonal components at times greater than t f

1 to
identify t f

1 .
We can now strip off the anisotropy of layer 1. In the current

formalism, this layer stripping is accomplished via the mode
advance operator:

D1 =
[
δ(t) 0

0 δ(t + 1t1)

]
. (C-4)

Operating on equation (C-3) from the right with D1, we have

S1(t1 + t2) ⊗ D1 = R(θ1 − θ2)P2 ⊗ sw(t)R(θ2 − θ1)

⊗ T1P1 ⊗ D1. (C-5)

The propagator matrix, layer stripped, is

T1P1 ⊗ D1 = T1

[
Af

1 ⊗ δ
(
t − t f

1

)
0

0 As
1 ⊗ δ

(
t − ts

1

)
]

⊗
[
δ(t) 0

0 δ(t + 1t1)

]

=
[

T11
1 Af

1 0

0 T22
1 As

1

]
⊗ δ

(
t − t f

1

)
. (C-6)

We define a mode-balancing filter Bs f
1 such that Bs f

1 ⊗ T22
1 As

1 =
T11

1 Af
1 (i.e., it reshapes the slow-mode wavelet into the fast-

mode wavelet) and a corresponding tensor operator

B1 ≡
[

δ(t) 0

0 Bs f
1

]
. (C-7)

Then we apply the mode-balancing operator B1 [equa-
tion (C-7)] to the downgoing propagator operator of equa-
tion (C-5) (from the left). We denote the layer-stripped data
on the left by

Ŝ1(t1 + t2) = S1(t1 + t2) ⊗ D1 ⊗ B1. (C-8)

Operating accordingly also on the right side of equation (C-5),
we have

Ŝ1(t1 + t2) = R(θ1 − θ2)
[
P2 ⊗ T11

1 Af
1 ⊗ δ

(
t − t f

1

)
⊗ sw(t)

]
R(θ2 − θ1). (C-9)

Because of the mode balancing, the matrix of layer-1 propaga-
tion filters on the right side of equation (C-6) has become pro-
portional to the identity matrix, so the proportionality scalar
function T11

1 Af
1 has been commuted into the interior of equa-

tion (C-9).
The quantity in brackets on the right of equation (C-9) is the

layer-stripped principal time series:

Ŝ(t) =
[

P2 ⊗ T11
1 Af

1 ⊗ sw
(
t − t f

1

)] = sT11
1 Af

1

⊗
[

Af
2 ⊗ w

(
t − t f

1 − t f
2

)
0

0 As
2 ⊗ w

(
t − t f

1 − t f
2 − 1t2

)
]

,

(C-10)
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where 1t2 ≡ ts
2 − t f

2 is the layer-2 delay of the layer-2 pure-
mode 22 component. Equation (C-9) then reads

Ŝ1(t1 + t2) = R(θ1 − θ2)Ŝ(t)R(θ2 − θ1), (C-11)

which can be solved as before [equation (B-9)] for the unknown
principal time series Ŝ(t):

Ŝ(t) = R(θ2 − θ1)Ŝ1(t1 + t2)R(θ1 − θ2). (C-12)

In words, the layer-stripped principal time series Ŝ(t) is the
layer-stripped data Ŝ1, rerotated. The recipe for the layer-
stripped data [equation (C-8)] is

Ŝ1(t1 + t2) ≡
[

S11
1 (t) S12

1 (t)

S21
1 (t) S22

1 (t)

]
⊗

[
δ(t) 0

0 δ(t + 1t1)

]
⊗ B1

(C-13)

=
[

S11
1 (t) S12

1 (t + 1t1)

S21
1 (t) S22

1 (t + 1t1)

]
⊗ B1. (C-14)

APPENDIX D

REFLECTION LAYER-STRIPPING (2C ×× 2C)

To layer strip reflection data, consider the observed data
tensor in equation (A-18) and rotate it to the layer-1 coordinate
system:

S1(2t1 + 2t2) = R(θ1)S0(2t1 + 2t2)R(−θ1). (D-1)

Operating accordingly on the right side of equation (A-18),

S1(2t1 + 2t2) = 2P1R(θ1 − θ2)T2P2 ⊗ R sw(t)

⊗ P2 ⊗ R(θ2 − θ1) T1P1. (D-2)

At this point, we approximate that R(θ1 −θ2)T2 = T2R(θ1 −θ2)
(strictly valid only if T11

2 = T22
2 ) and that T22

1 /T11
1 = T22

2 /T11
2 .

Ŝ(t) = 2Af
1 ⊗ δ

(
t − t f

1

)
T11

2 ⊗ P2 ⊗ Rsw(t)T11
1 ⊗ P2 ⊗ δ

(
t − t f

1

) ⊗ Af
1 (D-6)

= 2sT11
2 T11

1 Af
1 ⊗ R

[
Af

2 ⊗ w
(
t − 2t f

1 − 2t f
2

)
0

0 As
2 ⊗ w

(
t − 2t f

1 − 2t f
2 − 21t2

)
]

. (D-7)

These approximations may be relaxed with a more elaborate,
but still deterministic algorithm; however, we apply them to
equation (D-1) to expose the essentials.

Then we apply the layer-1 mode-delay operator D1 [equation
(C-4)] and the mode-balancing operator B1 [equation (C-7)] to
both the downgoing and the upcoming propagator operators
of equation (D-2) (i.e., from both right and left). We denote
the layer-stripped data on the left by

Ŝ1(2t1 +2t2) = B1 ⊗D1 ⊗S1(2t1 +2t2)⊗D1 ⊗B1. (D-3)

Equation (C-14) shows how to construct the layer-stripped data
Ŝ1(t1 + t2): rotate the data S0(t1 + t2) into the layer-1 coordinate
system forming S1(t1+t2) [following equation (C-1)], static shift
the layer 1 slow modes (column 2 above) forward in time by the
one-way delay 1t1, and balance the spectra using B1. The angle
θ1, the bottom of layer 1 (t f

1 ), and the delay time (1t1) may be
determined, for example, by the methods of Winterstein and
Meadows (1991a,b). (Remember to do the static shifts before
the mode balancing so the phase effects of the delay 1t1 are
not counted twice).

Aside from the formalism used here, which is broadly use-
ful in studies of vector wave motion, a principal contribution
of the present work is the recipe for the layer-stripped data,
Ŝ1(t1 + t2) [equation (C-14)]. If the attenuation of both modes
is the same (probably an uncommon circumstance), then the
mode-balancing operation is not required and this result re-
duces to that of Winterstein and Meadows (1991a,b). If the
mode attenuations are not the same, yet mode balancing is not
performed, then puzzling conclusions may be reached, leading
to spurious complexity in the vertical variation of anisotropy
direction.

Operating accordingly also on the right side of equation (D-2),
we have

Ŝ1(2t1 + 2t2) = Af
1 ⊗ δ

(
t − t f

1

)
T11

2 R(θ1 − θ2)

⊗ P2 ⊗ R2sw ⊗ P2

⊗ R(θ2 − θ1)T11
1 δ

(
t − t f

1

) ⊗ Af
1 .

(D-4)

Commuting the scalars into the interior, we have

Ŝ1(2t1 + 2t2) = R(θ1 − θ2)[Ŝ(t)]R(θ2 − θ1), (D-5)

where the quantity in brackets is the layer-stripped principal
time series:

Solving equation (D-5) for the unknown principal time series
Ŝ(t),

Ŝ(t) = R(θ2 − θ1)Ŝ1(2t1 + 2t2)R(θ1 − θ2), (D-8)

exactly analogous to equation (C-12). In words, the layer-
stripped principal time series Ŝ(t) is the layer-stripped data
Ŝ1, rerotated. The recipe for the layer-stripped data [equa-
tion (D-3)] is
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Ŝ1(2t1 + 2t2) = B1 ⊗
[
δ(t) 0

0 δ(t + 1t1)

]
⊗

[
S11

1 (t) S12
1 (t)

S21
1 (t) S22

1 (t)

]

⊗
[
δ(t) 0

0 δ(t + 1t1)

]
⊗ B1 (D-9)

= B1 ⊗
[

S11
1 (t) S12

1 (t + 1t1)

S21
1 (t + 1t1) S22

1 (t + 21t1)

]
⊗ B1.

(D-10)

APPENDIX E

2C LAYER-STRIPPING

If only a single source orientation is used, a solution in prin-
ciple may still be found. Consider first the VSP case. For the
first layer, the angle θ1 and delay 1t1 may be found using the
methods of Appendix B. Then, operating on equation (A-13)
from the left with R(θ1), the data vector (as rotated into layer-1
coordinates) may be denoted by

s1(t1 + t2) = R(θ1)s0(t1 + t2). (E-1)

For example, if the source is +in-line, then the rotated equa-
tion (A-13) reads

s1(t1 + t2) = R(θ1)R(−θ2)P2 ⊗ R(θ2 − θ1)T1P1

⊗ sw(t)
[

1

0

]
. (E-2)

The rotated data have the pure modes (fast and slow) on their
1 and 2 components, respectively, in the layer-1 time window
only; at later times, both components have both modes present.
Operating on equation (E-2) at all times, just as we did with
the mode-advance operator in equation (C-4), we have

D1 ⊗ S1(t1 + t2) =
[

S11
1 (t)

S21
1 (t + 1t1)

]
(E-3)

= D1 ⊗ R(θ1 − θ2)P2 ⊗ R(θ2 − θ1)T1P1

⊗ (
D1 ⊗ D−1

1

) ⊗ sw(t)
[

1

0

]
, (E-4)

where D−1
1 is the inverse of D1. Using equation (C-6) and as-

suming that the mode-balancing discussed in equation (C-7)
is unnecessary, we commute the layer 1 propagation operators
into the interior of this expression and recognize the principal
time series matrix Ŝ(t) [equation (C-10)], yielding

D1 ⊗ S1(t1 + t2)

= D1 ⊗ R(θ1 − θ2)[Ŝ(t)]R(θ2 − θ1)D−1
1

[
1

0

]
. (E-5)

If angles θ1 and θ2, and delays 1t1 and 1t2, were known, this
would constitute two equations in two unknowns [ŝ1(t) and
ŝ2(t)] at every time t . Alternatively, with additional assump-
tions about the layer 2 propagation filters, e.g., that Af

2 = As
2,

it becomes an overdetermined set of equations for the layer 2
parameters θ2 and 1t2. In either case, the layer-stripping pro-
cedure is much more complicated in this 2C case than in the
2C × 2C case, involving much more than simple rotations and
static shifts and subject to many more instabilities in practice.
Simple rescaling [equation (B-12)] does not work since the ma-
trices to the left of the vector on the right side of equation (E-5)
are not diagonal. Of course, the data may be static shifted, as
in equation (E-3), but this does not solve for the principal time
series at times later than the bottom of layer 1. The problem as
posed becomes one of nonlinear inversion of noisy data with a
lot of ambiguity present in the typical application.

This result is puzzling at first since it seems that if we can
solve for the anisotropy in layer 1, we just rotate our coordi-
nate system to that orientation, remove the time delay, and
repeat the process with layer 2. However, we cannot repeat
the process with layer 2 because the layer-1 process requires
the assumption that the layer contains only two events (one
fast, one slow) propagating. This is not true for deeper lay-
ers, where we have multiple events propagating at each of the
two velocities. The rotation and time shifting have not properly
aligned these multiple events in the layer-2 time window. Al-
gebraically, this shows in the appearance of operators D1 and
D−1

1 in equation (E-5).
Considering now the reflection 2C case with just +in-line

source, equation (A-18) becomes

S0(2t1 + 2t2) = 2R(−θ1)P1 ⊗ R(θ1 − θ2)T2P2

⊗ RP2 ⊗ R(θ2 − θ1)T1P1

⊗ R(θ1) sw(t)
[

1

0

]
. (E-6)

Proceeding as above, we find

D1 ⊗ S1(2t1 + 2t2) = D1

⊗ R(θ1 − θ2)[Ŝ(t)]R(θ2 − θ1)D−1
1

[
1

0

]
, (E-7)

where Ŝ(t) is the two-way principal time-series matrix [equa-
tion (D-6)]. The remarks following equation (E-5) apply
equally to this result.

Equation (D-10) shows how to construct the layer-stripped
data Ŝ1(2t1 + 2t2): rotate the data S0(2t1 + 2t2) into the layer-1
coordinate system forming S1(2t1 + 2t2) [following equa-
tion (D-1)], static shift the mismatched traces forward in time
by the one-way delay 1t1 and the slow (22) trace forward by
the full two-way delay 21t1, and balance the spectra using B1

twice. The angle θ1, the bottom of layer 1 (t f
1 ), and the delay

time (1t1) may be determined, for example, by the methods of
Winterstein and Meadows (1991a,b).

The mode-balancing filter B1 may be derived using the meth-
ods discussed in the main text.


