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Introduction 

An important issue in using seismic data to physically characterize crustal rocks is the dependence of seismic rock 
velocity upon the compressibility of the fluid in the pore space.  At seismic frequencies, the standard theory for 
understanding this fluid dependence is that of Biot (1941) and Gassmann (1951).  It is well-known that this theory 
predicts that the rigidity should be independent of fluid content, and that the fluid dependence of the incompressibility 
is given by an explicit formula (Eqn. (1), below). The purpose of this note is to point out an approximation in the 
theory that has not been fully appreciated.  Below it is shown that avoiding this approximation leads to a refinement of 
the standard Biot-Gassmann (“B-G”) formula for fluid substitution in rock incompressibility, with new requirements 
(compressibility data) for implementation. This revision has been reported previously (Brown and Korringa, 1975) in a 
limited context (non-uniform mineralogy); here it is shown to be much more general.  The refined formula fits 
experimental data better than does the classic formula.  

Experimental considerations 

It is sobering to reach the conclusion that a theory that has been well-accepted for over half a century is in fact not 
correct.  In such a case, we should immediately re-examine the experimental verification of the theoretical 
predictions.  It turns out that the theory has not, in fact, had strong experimental verification, despite its wide 
acceptance.  The ambiguous state of the experimental test of the B-G conclusions was discussed e.g. by Thomsen 

(1986), Winkler (1986), and Z. Wang (2000); this work is not reviewed here.   
 
A principal difficulty is that most of the previous experimental approaches have measured elastic velocities (P and S) 
at ultrasonic frequencies (in gas-saturated and liquid-saturated rock), whereas the theory is explicitly limited to quasi-
static (or low-frequency) measurements, with the assumption that it applies to elastic velocities at seismic 
frequencies.  Of course, the reason for this indirect experimental strategy is that direct measurements of 
compressibility under quasi-static conditions are difficult at the low strains (<10

-6
) beyond which non-linear effects 

become important.  The following analysis shows that in fact static compressibility tests are required in order to fully 

specify the parameters in the (refined) theory; recent work by Hart and Wang (2010) enables a fresh assessment. 

Theoretical considerations 

The proof of the Biot-Gassmann formula is here recapitulated, following the compact and clear argument of Brown 
and Korringa (1975) (“B&K”), but with an important change.  The argument is conducted in terms of compressibility 
rather than of incompressibility, but leads eventually to the classic low-frequency B-G formula: 
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where  Ksat , Kdry , Kfld , Ksol  are the incompressibilities of (respectively): the fluid-saturated rock, the rock with 

completely empty pore space, the pore-filling fluid, and the solid grains of the rock. is porosity, and  =1-Kdry/Ksol.  

 

Using mainly just calculus, B&K derive the difference between the dry compressibility A and the saturated 
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Biot-Gassmann Refined 

compressibility * (their Eqn. (13)): 
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in terms of various measures of compressibility of a mass element (“undrained”) M, ’, F,  defined by them. In 

particular, the “unjacketed compressibility” M and the “pore compressibility”  are: 
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where V is the volume of the mass element, V=V is its pore volume, pF  is the fluid pressure in the pore space, p is 

the total (“confining”) pressure, and pd=p-pF  is the differential pressure. Using the Reciprocity Theorem (Love, 1944), 

B&K obtained 'A – M = AM , leading to their primary scalar result:  
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They remark upon their success in generalizing the B-G result at the cost of only one additional parameter (), but 

do not emphasize that the appearance in (4) of  M (instead of the solid compressibility ’’ ) complicates the 

implementation substantially. However, for a rock with homogeneous solid, B&K concluded (following arguments 

discussed below) that, M =  = ’’ ( the compressibility of the solid grains), so that Eqn. (4) becomes 
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It is easy to show that Eqn. (5) is exactly the same as the classical B-G result (1), written in this notation.   

Here, we concentrate on B&K’s conclusion that M =  = ’’ for monomineralic rocks. This conclusion follows from 

their assertion that equality of stress across all the solid-fluid surfaces  of the rock results in a self-similar volume 

change, with no change in porosity (pore volume/total volume).  In fact, it is easy to show that the change in porosity 
is given by  
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and that )''('''')1(
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Biot-Gassmann Refined 

from which it is easy to see that invariance of  leads to the conclusion that M =  =’’ . 

B&K simply assert that is invariant, with respect to pF . However that conclusion is clearly proven by Gurevich 

(2004); the proof allows examination of its assumptions.  In the proof, pF is regarded as an independent variable (to 

be adjusted by an experimenter), whereas in the present context,

 

it is a dependent variable, determined by the 
external pressure, by the rock properties, and by the assumption of no fluid flow into or out of the mass element.  In 

this undrained context, pF is linearly related to the volume V (through the fluid compressibility F); this connection 

means that the deformation cannot be self-similar.  

 
In the general case, the distortion of the solid by the application of uniform pF throughout the rock is a complicated 

function of solid incompressibility, rigidity, and micro-geometry.  But, it is easy to imagine an artificial case where 
none of this matters.  Imagine the case where the mass element consists of a cube of homogeneous isotropic solid 

material with volume VM, surrounded by a cubic shell of fluid with volume V.  (If it is desired that the solid should be 

simply connected, imagine very thin spacers, made of the same solid material, which connect the solid cube to other 

similar cubes in nearby mass elements, but which do not materially distort the stresses.)  Application of uniform pF (at 

constant pd ) throughout this peculiar mass element results in no shear stress at all, only a uniform compression of 

both solid and fluid, each according to its own compressibility (''  or F , respectively).  This changes the relative 

volume fraction occupied by solid and by fluid, hence it changes the fluid-filled porosity, V /V .   Hence, from Eqns. 

(6, 7) it follows that  ,  , and ''  are all different.  Of course this artificial case has no significance in itself, but 

only illustrates, by example, the principle that in the general case,  ,  , and ''  are all different. 

This argument confirms B&K’s conclusion that  differs from  and '' , and generalizes it to include even the 

special case of homogenous solid. Hence, it is certainly necessary to consider the complications posed by the 

appearance in Eqn. (4) of  , and  in even the simplest cases. In terms of incompressibilities, Eqn. (4) becomes 

(compare with B&K (2)): 
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The difficulty in using this expression for seismic fluid substitution is that (unlike the solid compressibility ”) both  
and M are parameters of the rock, and depend upon composition, rigidity, and micro-geometry in a complicated way, 

not susceptible to theoretical resolution.  

In recent compressibility experiments, Hart and Wang (2010) independently measured all the parameters of Eqn. (4) 

except for , in Berea sandstone and Indiana limestone, and found that (especially in the sandstone) that   differed 

from , in a stress-dependent way.  (Since this approach assumes the validity of Eqn. (4), it cannot be used as a 

check of the same equation.) They also measured Skempton’s B-coefficient, the ratio of fluid pressure to confining 
pressure in an undrained experiment, given in terms of compressibilities by (H. F. Wang, 2000): 
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and used this overdetermined dataset to prove their point, conservatively. However, their data can also serve as a 
validity check of Eqns. (4, 8).  In the course of deriving Eqn. (2), B&K analyze the variation of the pore volume with 
applied pressure in an undrained experiment, finding that (their Eqn. (12)): 

FFFF pppp   )('
       (10) 

Using their subsequent result that ' = A - M, this is
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Biot-Gassmann Refined 

 
)(

)(
1

1

MA

F

F Bp

p







 






         (11) 

so that the pore compressibility is given as 
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Using the sandstone data from Hart and Wang (2010, Table 1), Fig. 1 confirms their conclusion that ''  M
. 

This conclusion seems to be firm, even with this less conservative approach (despite the evidence of scatter in the 
data, especially at differential pressures greater than 15 MPa). Because of the pressure-dependence of the 
differences, they cannot be due to the fact that the sandstone has about 20% of non-quartz minerals, but must be 
due to the microgeometry of the rock, in particular to the closing of microcracks with increasing pressure. 

 

Figure 1. Demonstrating that ''  M
                      Fig. 2. Neglect of this complexity causes systematic error. 

Further, when these measured values are used to calculate the difference * A , using the refined B-G Eqn. (4), 

the agreement with experiment is fairly good (Fig. 2). When the classic B-G formula (5) is used to calculate this 
difference, the errors are somewhat larger, and biased low, particularly at low differential pressure. 

Conclusions 

In the classic expression (1 or 5) of Biot-Gassmann for fluid substitution in the rock compressibility, A contains 

an approximation previously identified (by B&K, in a limited context), whose generality has not been fully appreciated.  
Correction of this approximation (using Eqn. (4) replacing Eqn. (5) requires data on rock compressibility. With the 
correction, agreement of theory and the experimental data of Hart and Wang (2010) is fairly good.  By contrast, the 
classic equation gives predictions which are systematically lower.  The significance of the correction depends upon 
the particular circumstances, and is most important where the rock contains cracks or fractures. 
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