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Weak Anisotropic Reflections

Leon Thomsen®

INTRODUCTION

As discussed elsewhere in this volume, the angular
dependence of the P-wave reflection coefficient R,(0)
between planar isotropic media involves the S-wave
properties of both media. This situation has raised the
hopes of the petroleum industry that S-wave informa-
tion about subsurface formations may be found
cheaply, through the range dependence of P-wave
reflection amplitudes,

However, the subsurface formations are invariably
anisotropic, and it is intuitively obvious that the angu-
lar dependence of elastic wave velocities should mod-
ify the angular dependence of the quasi-P-wave reflec-
tion coellicient. This intuition is verified in numerical
studies reported in Wright (1984, 1987), who demon-
strated that the effect is nontrivial and may substan-
tially interfere with the deduction of S-wave proper-
ties. Banik (1987) verified Wright's results analy-
tically, with a closed analytical expression for the
anisotropic reflection coefficient, in the limit of weak
anisotropy and small angles. The present work gener-
alizes these analytic results to larger angles, and
discusses the extension of understanding beyond the
numerical examples.

A very brief account of weak isotropic reflections is
followed by a very brief account of weak anisotropic
body wave propagation. The application to P-wave
reflections between weakly anisotropic media follows,
with derivations given in an Appendix.

Weak Elastic Reflections

The exact solution for the oblique P-wave reflection
at a planar interface between two isotropic media is
well-known; a pood account is presented in Aki and
Richards (1980, chapter 5}, However, the exact result
is %0 complex algebraically that it is difficult to grasp
intuitively the physics contained in it. Furthermore, it
depends upon compressional velocity {V,). shear
velocity (V,), and density (p) in both media, which
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means that a numerical study necessarily involves the
exploration of a six-parameter model space. Not even
the choice of parameters is obvious, and inappropriate
choices [e.g., Poisson’s ratio, cf. Koefoed (1955)] have
received much discussion,

Fortunately, in most contexts in exploration seis-
mology, an appropriate simplification is available.
Since at most reflecting interfaces, the contrast in
clastic properties is small, it is appropriate to linearize
the exact solution in the small quantities:

AV,

)

where the bar denotes an average of properties, above
and below the interface. Chapman (1976) showed that
the linearized reflection coefficient is (cf. also Aki and
Richards, 1980):

L [AZ, | 1]Av, (V*AG]
Rpl} ===+ = 2 [ =] —=| ¢in" b
pl 2 |2 2|7, : V.n J ; 1
1 [V, G i
+ = |—=—| tan* U sin- 8 (1)
21 ¥y
where © is the incidence angle, Z, = pV, is the

P-wave impedance, and G = pV? is the shear mod-
ulus. Equation 1 is equivalent to, but algebraically
simpler than, the linearized formulation in Shuey
(1985} and differs from an expression in Wiggins et al.,
(1985} in not being restricted to small angles or to
particular assumptions on V,/V,, and more impor-
tantly, in the sign of the {.-iﬁ.foFF] sin® f term.
Figure | shows the accuracy of the linear approxi-
mation compared to the exact solution, for a particular
case. Bortleld (1961) has presented an approximation
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for R,(8) which is partly linearized. In some cases,
Bortfeld's approximation will be more numerically
accurate than equation (1), but less accurate in other
cases. In any case, numerical accuracy is not the chiel
virtue of equation (1); all serious calculations should
be done with the exact result, The chief virtue of
equation (1) is that its simplicity of form allows one to
understand the physics involved. Furthermore, equa-
tion (1) shows that a numerical study (fitting data to
rock properties) need only explore a three-dimensional
parameter space; the three parameters are the three
combinations of differentials in brackeis in equation
(1} or combinations of these. We are reminded, once
again, that reflections do not depend on absolute
values of rock properties separately, but only on
certain differences in properties. Absolute values of
V,. elc., may be found by integrating (through trav-
cluime) the differences ;'Z'.VI.JTF',, , ele., found at reflect-
ing events. Further discussion of this isotropic prob-
lem is presented elsewhere in this volume; the minus-
sign in the coefficient of the sin® @ term in equation (1)
is the crucial feature which makes this discussion
ineresting,
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Fig. |. Isotropic reflection coefficient variation with
ray angle. Solid line—exact solution. Dashed line—
weak elastic approximation [Equsation (1)]. The model
parameters are: incident V, = 9500 ft/s (2895
mis), incident V', = 3800 ft's (1768 m's), incident
density = 2.18 gm/cc, reflecting V, = 10 000 {t's
(3048 m/s), reflecting V, = 6000 ft/'s (1829 m/s),
reflecting density = 2.2 gmfcc.

Weak Anisotropic Reflections
Weak Elastic Anisotropy

Most rocks are weakly anisotropic, with elastic
velocities depending both on angle of propagation
(measured azimuthally and from the vertical) and on
angle of polarization (for S-waves). The azimuthal
dependence may be neglected, however, for -wave
propagation atl small-to-moderate angles of incidence;
cf. Thomsen (1988) and references cited therein. For
body waves in an azimuthally isotropic rock, Thomsen
{1986) showed that the various velocities normal to
wavelronts are

Vo(8) = ag(l + 5 sin® 6 cos” 0 + & sin* @) (2)

fici il ) ]
Vi (o) = Hul] + [Jh (e — &) sin” 8 cos* B (1)
..[jhl_l ;

Vi (8) = Bgll + v sin® 8). (4)

Here §1 and 8| denote S-waves with polarization
vectors that have o component perpendicular (L) to
the plane of symmetry, or are parallel (||} to the plane.
If the symmetry plane is parallel to the ground surlace,
these waves are polarized in-line and cross-line, re-
spectively. In a horizontally stratified isotropic con-
text, these may be called S V- and SH-waves, respec-
tively, but in anisotropic media, this labeling (with its
irrelevant reference to the direction of gravity) may at
times lead to confusion.

In equations (2, 3, and 4}, ap and By are £- and
S-wave velocities, respectively, for propagation along
the symmetry axis, and 8 is the angle of propagation
(trivially different from the wavefront-normal angle in
this context). g, &, and v are three independent aniso-
tropic parameters, each assumed to be much less than
one. £ 1s the “familiar’” P-wave anisotropy: in terms of
vertical and horizontal velocities

V;r':g':}o] ]

£E= (5}
|
v is the corresponding quantity for S-waves:
Vg (907) — Ba
_ I = Bo . (6)

Bo

§ 15 the “strange” £-5 1 anisotropic parameter, de-
fined in terms of elastic moduli in Thomsen (1986);
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or alternatively in terms of P-wave velocity by
B =4[V, (4591, (0°) — 1]
— [V, (90°)V,{0°) — 1]. (8)

The parameter & is intuitively inaccessible, and is
tedious to measure in the laboratory, but Thomsen
(198%) showed that & is much more important in most
cxploration contexts than is the more familiar amisotropy
parameter . The reason is that, for small angles #, the
e-term in equation (2) is much smaller than the &-term
{unless in some instance & == £), so that the &-lerm
usually dominates. Thomsen (1986) tabulated most
published experimental values of &, documenting that
in general & # &, and hence that P-wavelronts in most
azimuthally isotropic rocks are not elliptical.

Other measures of anisotropy are possible, of course
[ef. e.z., Banik (1987)]. However, the set (&, & ) secms
most convenient in discussions where near-vertical
Pwave propagation is prominent, and hence where &
recurs as the leading anisotropy term in cguations ex-
pressing Pawave angular dependence. If, in some other
context, explicit introduction of & measure of § L anisot-
ropy were important, then the parameter

is suggested by the form of equation (3). For near-
vertical problems including § L-waves,. the appropri-
ate set of anisotropies is then (&, o, v), although the
redundant set (&, o, £, ¥) might be vsed if properly
explained. Of course, these parameters are useful for
characterizing the medium, and for intuitively under-
standing medium behavior, even when they are not
small.

Weak Anisoiropic Reflections

The salution to the general problem of P-wave
reflections in anisotropic media was given in Keith and
Crampin (1977). The specialization to a specific form
of azimuthal anisotropy particularly relevant to seis-
mic exploration was discussed in Thomsen (1988).

Here, we are concerned especially with angle-de-
pendent effects due to P-wave reflections in azimuth-
ally isotropic media, from an interface parallel to the
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symmetry planes of the media. The exact solution 1o
this reflection problem was given in Daley and Hron
{1977). Even more so than in the isolropic case, that
solution is so algebraically complex that sceing the
essential physics is difficult. Fortunately, an appropri-
ate approximation is available, i.c., that the anisotropy
is weak in both media, and that the contrasts io
vertical elastic properties are also small. Specifically,
the assumplion is:

Ay
— =1 Bl =1,
an el
ARg
=—| = | Bul=1, (9
o
ﬂ'.|::| :
—| =1 |“r'u| =

where subscript i denotes either (1) incident medium
or (2) reflecting medium,

The derivation of the quasi-P-wave reflection coef-
ficient subject to these assumptions is given in the
Appendix. The result is

] 1 |AZy
Ry(8) == |5
2 2| £y
| .':'n.r,1|| ZE;; 3 -':'LGIJ
+=|=—=|=—| —=—+1®2—38)sin? 0
2| @q wy ¢ Oy
| .'jl.t'.l.u 2] 2
| —— —{fx— 8; —ex+ e )| tan” 4 sin” B
2| g
(10}
where Zy = pay and Gy pR4 are the vertical

P-wave impedance and S-wave modulus, The corre-
sponding transmission coellicient, and the equivalent
quantities for S-waves are given in the Appendix,
Equation (1) reduces to Banik’s (1987) result in the
limit of small angles, Figure 2 shows the accuracy of
the linear approximation compared to the exact solu-
tion, for a particular case. Equation (10) is directly
comparable to equation (1), the isotropic case, One
sees immediately that the isotropic case may be recov-
ered by assigning zero anisotropies in equation (101, At
normal incidence (0 = 0), only the first term is non-
zero. This first term is the same in both egquations
because each anisotropic medium has been parameter-
ized in terms of two verrical velocities (plus three
anisotropies), instead of five elastic moduli.

The second term of both equations (in sin® #) gives
the low-order angular variation. The coefficients of
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these terms involve contrasts in the vertical velocities

and also contrasts in the anisofropies, The coefficient
- . ¥

of the sin® 0 term,

[ﬂun_zﬁn‘]lancaL ol
o E (&g 3|JJ~ (1}

Id | ==

iy iy |

illustrates the fundamental conclusion of this work;
the anisotropy is a firsf-order effect in the range
dependence of RI,,[EJ]-. That is, the anisotropy enters
ino terms like equation (1) as simple additions (of the
same magnitude) 1o the {sotropic terms (Aowg/dy, ele.).
Therefore, the anisotropy makes a nonneghgible (first-
order) contribution, even when it is weak. This hap-
pens because, while an anisotropy of 10 percent is
small compared to 1, and hence negligible in many
contexts, it is not negligible when the leading term is
also of order [0 percent, or less, as in the present
discussion, e.g.. equation (11). Another example of
this situation was given by Thomsen (1986) in the
Discussion concluding that work.

Another feature of anisotropic reflections is that the
anisotropy which appears in the lowest angular order
[cf. equation (11}] is the strange anisotropy &, rather
than the Familiar anisotropy &, This is another instance
of the conclusion of Thomsen (1986) that the gquantity
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Fig. 2. Anisotropic reflection coefficient variation with
ray angle, Solid line—exact solution. Dashed line—
weak elastic and weak anisotropy approximation
[equation (10)]. The model parameters are the same
vertical velocities and densities as those of Fig. | and
in addition incident delta (&) = ()., incident epsilon (&)
[-—-}EI'.. l‘ﬁ,_ﬁccling delta (5) = .10, and reflecting epsilon
£} = .05,

Weak Anisotropic Reflections

§ i% more important than £ in exploration seismology.
In fact, when particular examples, such as those of
Wright (1984, 1987), are considered for the effects of
anisotropic elastic moduli, it is primarily the combina-
tion of moduli composing & (rather than the individual
moduli) which determines the result,

When the exact equations (Daley and Hron, 1977)
are implemented, inputting five elastic moduli for cach
medium, it is difficult 1o rationally specify modulus
values 1o vield values of § appropriate for sedimentary
rocks. A better approach is to first select anisotropy
parameters, &, £, and v, perhaps vsing Table 1 from
Thomsen (1986) as a guide. These values for intrinsic
anisotropy must usually be modified by considerations
of effective long-wavelength (extrinsic) anisotropy,
due to stratification (Backus, 1962), Note that for & (in
contrast 1o e), both positive and negative values are
plausible. If the selected anisotropies & and e are
small, one may use equation (10} directly 1o caleulate
reflectivity. A better procedure is to first calculate
elastic moduli using equations (5-8), and then calcu-
late reflectivity using the exact formulas in Daley and
Hron (1977). Whether or not the anisotropies are
small, equation (10) provides a guide for iterative
adjustment of values for forward modeling purposes,

A third feature ol the linearized anisotropic reflec-
tion coefficient, equation (10}, is that the anisotropy
appears only as a difference in anisotropics across the
reflecting boundary. Hence, the isotropic case may be
recovercd if both media are equally anisotropic, so
that differences such as &s — &; vanish. This is
possible in some cases, but implausible in general. In
fact, many reflection scenarios involve a sandsione
{very weak anisotropy) on one side of the interface and
a shale (weak to moderate anisotropy) on the other, In
these cases, a suitable approximation is to neglect the
sandstone anisotropy altogether, leaving only terms in
Byphale 0 the equations, along with the isotropic ferms
n':'iu.:,.ll.{._tu.. etc.

Examples

The linearized equation (10) analytically verifies the
conclusions of Wright (1984, 1987, determined by
numerical computations using the exact solutions, In
Wright's examples, one may verify that his assumed
anisolropies were, in fact, plausible for sedimentary
examples, by calculating

g1 =0 &, =0

Eyx = 26 31 = .40
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for the Model 2 shale in his Figure 5. This is a large
ibut not implavsible) value, cof. Thomsen [198&);
Wright used this value in a case where Aog/ay was also
large.

Wright's point mav be made directly uosing the
present analysis. The previous Figures [ and 2, pre-
senting isotropic and anisotropic calculations respec-
tively, were done using the same vertical velocities (P
and &) and densities in the two cases. The two
calculations differ only in the non-zero anisotropies
used in Figure 2. The reflecting horizon represents a
normal lithologic change, i.e., one with velocity and
density jumps leading to a decreasing R ;(#), as cal-
culated with isotropic theory (Figure 1). However, if
the same normal lithologic change is associated with a
plausible change in anisotropy, then R, (8) increases
with angle (Figure 2) instead of decreasing. By isolro-
pic theory, this increase could be interpreted as indic-
ative of gas; here a similar effect is caused by anisot-
ropy.

Banik (1987) has provided further examples. How-
ever, for developing insight it is more efficient to
simply examine equation (10}, One essential point is

the size and sign of 8, — &), relative to Aapla,. If

Wright had chosen an example with smaller Aag/ag,
he could have shown the same anisotropic effect with
a smaller &, In fact, in any specific context, it is
usually not clear what values of & {(and &) are appro-
priate. Hence, in forward modeling, the anisotropy
must often be allowed to assume a wide range of
values. Therefore, in fitting the equation to data. the
uncertainty in the other terms is correspondingly
large, and & conclusion (such as the presence of gas in
one medium) s correspondingly uncertain.

However, from equation (10}, it is clear that, if the
isolropic terms (e.g., Awag/&y) are large, then any
plausible anisotropy will yvield only quantitative (not
quitlitative) effects. Hence. among bright reflections,
one may have more confidence in an isotropic inter-
pretation than among less bright reflections, especially
in a qualitalive sense.

Nonetheless, maost reflections are not bright (by
definition), and so most have angular variations which
are quantitatively affected by anisotropy. Hence, al-
tempts to recover absolute values of p, V,, elc., by
integration over traveltime, will have to correct for
these anisotropic contributions.

Implications for Exploration

It is shown here analytically that anisotropy consti-
tules a first-order effect in the angular dependence of
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P-wave reflection amplitude. Therefore, in the general
case, it may nol be neglected for quantitative work, In
other words, the angular dependence of R, (8} con-
tains information, not only about S-wave propertics of
the media, bul also sbout their anisotropies. The two
effects are plausibly of comparable size, and not easy
to separate. Hence, the S-wave information may nol
be deduced from this angular dependence, without
corrections or assumptions regarding the anisotropy.
The assumption of zero anisolropy is probably not
realistic.

The anisotropic parameter which primarily controls
the effect is the “strange™ anisolropy parameier &,
rather than the familiar parameter e, Very litile is
known about appropriate values for 8, Thomsen ([986)
tabulates most published laboratory and feld measure-
ments, but in any field context, there will be additional
contributions to the effective value of & from thin-
stratification. In fact, it appears that the angular vari-
ation in R, (8), in conjunction with independent infor-
mation on AV, /V,, elc., may constitute one of the
best ways to eslimate anisotropy in situ.

Because anisotropy appears as a first-order contri-
bution to the angular dependence of R,(8), it follows
that exploration success, obtained by neglecting the
effect in one context, may not presage similar success
in other contexts, For example, the effect may be
negligible (due to very small anisotropy or very similar
anisotropies) in rocks in a certain basin, or of a cerlain
age, vielding accurate predictions of gas by using the
isotropic interpretation. Equation ([0 shows that such
stccess may nol be confidently generalized 10 rocks of
a different basin or a different age, where the anisotro-
pies may not be so obliging, If the isotropic approxi-
mation is to be used, it must be justificd separately in
every conlext.

Similarly, although neglect of the anisotropic con-
tributions may lead to gualitative success of the iso-
tropic interpretation for bright events, this success
may not extend to less bright events. Further, deduc-
tion of absolute values for in-sitlu S-wave velocity,
etc., will be guantitatively in error, even when the
isolropic theory is gualitatively adequate at selected
horizons.

Therefore, (1 appears that the hope of oblaining
cheap S-wave information from the range dependence
of P-wave reflection amplitudes is complicated, in an
essential way, by anisotropy. The extent of the com-
plication should become clearer, within a few years, as
the industry acguires a belter understanding of the
effective in-situ values of anisolropy.




108
APPENDIX A—DERIVATIONS

The most straightforward way of linearizing the
reflection coefficient is to differentiate the exact ex-
pression for R,(8) [cf. Daley and Hron (1977), equa-
tion (17)] in each of the seven small quantities in
equation (9) (not including v, which enters the S|
problem only). Denoting these by o,,n=1---7, the
ANSWEr 18

L #Rp(8)
R,(0)=" ﬁd,, (A-1)

1]
where the summation is over the repeated indices.
Although the algebra is tedious, it may be performed
by symbolic manipulation software, such as REDUCE
or Mathematica,

In practice, this straightforward approach over-
whelmed the computer memory resources available at
the time of this research {1982). However, substan-
tially less memory is required by the following ap-
proach: Instead of linearizing the exact answer, we
linearize the exact equations, and solve the resulting
simpler problems,

The reflection coeflicient R pl0) is found by solving
the boundary conditions for continuity of displace-
ment and stress al the interface. As in the isotropic
problem, the incident P-wave excites only outgoing P-
and § L-waves, with indices;

v = incident quasi-P-wave

v =1 reflected guasi-P-wave

v =2 transmitted quasi-P-wave
v =13 reflected quasi-S L -wave

v =4 transmitted quasi-§ L -wave

The displacement of the vth wave, propagating in the
sagittal (& — 2) plane, is
u'-'{ I,z = f-'rllﬂp{’ ust = Ky, - II. ["_5‘_-2}

where L7 is a scalar amplitude, g, is the vth polariza-
tion vector, w is circular frequency, and k is the vth
propagalion vector,

The propagation vector is

k(b =

—_ [sin 8,% + cos B,2]  (A-3)
wify)

where V' is the wavefront velocity, given by equa-

tions (2} and (3) in the main text, and 0, is the angle

between the wavefront normal and the symmetry axis.

If the anisotropy is weak, the angle 0§, differs neghigibly

from the ray angle. The polarizalion vector is

g, =01 + AL )sind, 3+ (1 +Am, JcosB, 2, (Ad)

Weak Anisoiropic Reflections
where

At, =[8, =2(8, —&,) sin® 8,] cos® 0, [A-5)

An, = —[8, —2(5, — &, )sin”0,]sin®0,, { A-6)

with index = 1 for the incident medium (v = 0, 2, 4),
and p = 2 for the reflecting medium (v = 1, 3), Using
these lincarized solutions of the wave equations, the
boundary condition for continuity of two components
of displacement at the interface (z = 0) may be written

q

> (=0 =u!

v=1

(=1 or 3. (A-T)

The indexing scheme thus lends itself to collection of
the oulgoing waves on the left, and the incoming
{source) wave on the right.

The corresponding equations for continuity of two
components of stress, on the z = 0 plane, are

4
E {—1] "n';_'; = u}-;
r=1

=1 or3 (A=-H)

where the stress corresponding to the vth displace-
ment field 15

dup  aul
: (A-9)

F N ™
ailx, 2) e Yol T {_ +
= e

Vilvy gy f

It is casily established that no solution to equations
(A-T7, 8) is valid at all times, unless w is the same for all
v, as shown. Similarly, no solution is valid al all x
unless the “*wavefront parameter™

sin 0,

e A-]
Volty) (e

P

15 the same for all v. This conclusion is the anisotropic
generalization of Snell™s law,

This set of four equations (A-7, A-8) may be writlen

compactly following Daley and Hron (1977 (but without

their interchange of rows 2 and 3) in terms of matrices:

AU =B, (A-11)

where U is a column-vector of length four, containing
the unknowns:

U=l (A-12)

B is 4 column-vector containing the source terms:
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=pFnitn}

o lf.':-!j sin Oy cos g
B=U, (A-13)
caos by

£

The mapping matrix A has the following form [from
Daley and Hron (1977)]:

1+ Aés
PVa “Tie; rk2
(.'_ilﬁ Vi cos By Cé:;f,p o cos 82
A= 1+ Amia
cos Ay m cos b2
~E o

where the following symbaols have been used:
Dy = (1+ A€3)C3; — (1 + dm;3)C1s,

D1 =(1+A€)C3 = (1 + Amy)Cly,
Ep=(1+A€)C|; sin® by

+ (1 4 Amy)C5; cos? by,

i)

£y = ot [(1 + A€3)CT; sin? 0,
+{1+ ri'unz}{‘_%_q cos? Ba],

ey 1

W =——— — R
V‘-][Ejj} 2 +.|':'|.Fl -+ ﬂ.l‘?!l
® [(1 + Am3) cos® 83 — (1 + A€3) sin? 03],
Fpih ) 1

M =

Fa(04) 2+ A€, + Am,

® [(1 + Amg) cos? 84 — (1 + A€y) sin® B4],
y o 24+ Afs + Amos

2+ A€+ Amg

It is easy to formally wrile the solution to equation
(A-11) as

U=A"'B.

(A-15)
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Further, it is easy to rewrite the entire system in terms
of the degenerate set of equations {i.e., the set with all
small quantities «,, = 0 identically), plus small depar-
tures from this degenerate set. Denoting the degener-
ate set with subscript 00, the degenerate version of
equation (A-11) reads

AplUp = By. (A-16)
1+ Amig 14 Amy
————— o058 —— 05 0
1+ A€, T+ A ¥
3 | 22 1ar
(,55W| c-_'iSHrZ
§ (A-14)
1+ j;f} . 1 + .':'I.E.j
s i ——pnl
I+.-iumf ' 1+.-1m|p g
DypVy cos 6 —ap ¥y cos By N

This equation describes the propagation of a planc
Powave through a phantom “interface’ between iden-
tical, isotropic media. The solution is

(0
(A-17)

corresponding to a transmitted P-wave with un-
changed amplitude 77,

Denoting departures from this case with A, the
general case, equation {A-11), may be rewritten as

(Ap + AA)Uy + AU) = By + AB.

Linearizing this expression in A, and using equation
{A-16), the difference equation is

ApAU + AAUp = AB,
whose solution is
AU = A; '[AB — AAU,]. (A-184)

With indices explicit, this is

AU, = 3 (Ag )neAB, — AA LU

v=1,2,3 4. {A=18b)
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For the incident-P problem, the only nonzero element
in Uy is the second one, [ef. equation (A-17)], which
means that only the second column of differentials
Ad 5 is required. The first component of AU will be
u! (@), the scalar amplitude of the reflected P-wave:
R,(0y) = U'(H}JU,-, is the reflection cocfficient.

Equation {A-18) is much easier to solve analytically
than is the exact result [equation (A-15)] since A ! is
very complex, whereas Ag may be found in simple
closed form because of the high degree of symmetry in
Ayt

(V0 ~Ap(1, 1)
-1
i Csgpay cos @y Ap(2, 1)
cos iy Agi3, 1}
| —Call = 2p7B)  —Ap(4, 1)

which leads to

Weak Anisotropic Reflections

I
+ —
4

i . 2
— 4+ {gx — & )| sin® B tan= B
oy

~ (B3 —8; —e2 +e¢)sin? 0 (A-22)
Notice that T}, # 1 — R, except at normal incidence.
Equation A-22 reduces to Banik’s (1987} expression at
small angles.

The corresponding expressions for § L-waves may
be derived using the same methods. The results are:

cos B —Ay(1, 3)

g Cas(cos? 83 ~pBd

B Ap(2, 3) :

Apl3, 3)
~Ag(4, 3)

(A-19)
—pV;

EL',!,,‘nuu cos 03

(Bn]“ . P
— | sin 8,4
o poeg co0s By
-Ag'(1, 1) A, )
Ag' =
11} dys2
(L—=2p*F ) 1
2 cos 03 a0 Vo
-Ag'3, 1) A45'3,2)

This result was found using the facilities of REDUCE
(Hearn, 1978). The differentials AB and AA, required
in equation (A-18), are straightforward, for example:
AB, =T i 9
W el o

L

ni k=1, .2:! :l":r 41: [A'zl}l

and similarly for A4 .. Putting these together, the
answer for the reflection coefficient is given as equa-
tion (10} of the main text. Equation (10} is valid at any
angle, not too close to critical, for reflections between
two similar, weakly anisotropic media, with symmetry
planes parallel to the interface.

The corresponding expression [or the transmission
cocfficient is

1 AZp 1 [Awg
- ——+ {82 — fy) | sin® B

1 -2p2p3 -1
2 cos By

AT, 3

.'Epu':ncl_l2

~Ag (1, 4)
‘ (A-20)
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sinfly —m—— 8 —
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% sin® B(1 — 2 sin® ). (A-24)




Thomsen

Note that Ty, # 1 — Ry, ., except at normal inci-
dence. There is no sin? term in R g, ; equation (A-23)
agrees with Banik (1987). Equation (A-24) reduces to
Bamk's expression at small angles,

The exact coefficients for §||-waves are not very
complex (cf, Daley and Hron (19791, Nonetheless, it is
instructive to display their form for weak anisotropy:

1 l".-ﬁ;p i'l.ﬁ[l)

Rgpd)=——|—+ —
2hp Bo
L Ao T =
+—=|=—+{y2 — )| tan- 0, (A-25)
2| Bo |
Tgp(dh =1+ Rg(0). {A-26)

Because of the ubigquity of very weak azimuthal an-
isotropy in sedimentary rocks, and its nonetheless
marked effects on S-waves (cf. Thomsen, 1988), care
should be taken to use equations (A-23 thru A-26) only
in contexts where their assumptions are valid.
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