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Summary 
 
Most modern seismic data analysis of shale resource 
prospects is done using anisotropic methods, but much of 
the subsequent subsurface characterization is done using 
isotropic concepts, for example using the isotropic elastic 
parameters λ, E, and ν . This inconsistency introduces 
errors because of the neglected anisotropy of the shale.  
This work gives explicit expressions for these errors, in 
terms of the anisotropy parameters δ, ε, and γ ,  which 
are familiar from seismic analysis. 
 
Introduction 
 
Most modern seismic data acquisition, processing, 
imaging, and interpretation, which are aimed at 
understanding shale resource prospects, is done using 
anisotropic concepts and algorithms.  Of course, the 
reason for this is that the reservoir rocks (and indeed most 
of the overburden rocks) are in fact anisotropic, and it is 
now realized that neglecting this fact can lead to poor 
results. The anisotropy can be simple (i.e. polar 
anisotropy for unfractured shales) or complex (i.e. 
azimuthal anisotropy (orthorhombic or monoclinic; never 
“HTI” or “VTI + HTI” [sic!]) for fractured shales.  
 
However, for mechanical analysis, e.g. (ductility, brittle-
ness, “frackability”, etc. it is common to use empirical 
relations which rely upon isotropic concepts (applied to 
these very same anisotropic rocks!) such as the Lame 
parameter λ, the Young’s modulus E, and/or the 
Poisson’s ratio ν. The present work aims to understand 
the consequences of this inconsistent practice. 
 
In the following, we will refer to these “isotropic 
parameters” of anisotropic rocks as “apparent isotropic 
parameters”.  A proper anisotropic interpretation of what 
they might mean depends upon 1) how they are 
determined, and 2) the symmetry of the anisotropic rocks. 
Here we will consider several classes of data which can 
lead to the determination of these apparent isotropic 
parameters; in all cases the data comes from wave 
propagation, and the apparent isotropic parameters are 
calculated from this data, using isotropic formulae. For 
simplicity, we will assume here that the rocks are polar 
anisotropic (i.e. that all horizontal directions are 
equivalent, and different from the vertical direction; this 
used to be called “VTI” [sic!], and is a plausible 
idealization of unfractured shales (as in Figure 1).  
However, these methods can be extended to lower 
symmetries in straight-forward fashion; e.g. to 
orthorhombic or monoclinic symmetry for fractured 
shales. 
 
 

 
 

 
 
Apparent isotropic parameters from log data 
 
In this section, we assume that the underlying data come 
from sonic ( VP and VS ) and density ( ρ  ) logs, from a 
wellbore which is vertical and normal to the bedding 
planes, thus parallel to the polar anisotropic symmetry 
axis.  We also assume that the logs record these nominal 
parameters accurately, without any of the many issues 
that could interfere with this conclusion. 
 
 
In this situation, these velocities are more properly called 
“vertical velocities” VP0 and VS0 . In this case, there is a 
common misconception that, for example, the apparent 
Young’s modulus is the “vertical Young’s modulus”, i.e. 
measurable by conventional techniques, in the vertical 
direction, but calculated using the isotropic formulae: 
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To understand why this is not true, recall that Young’s 
modulus is defined as the elastic parameter which 
governs the strain in the direction of the applied stress (in 

 
 
Figure 1:  Marcellus shale, Pennsylvania, USA.  Because 
of the fine-scale layering, this formation (where it does not 
include natural or artificial fractures) has polar anisotropic 
symmetry.  This symmetry is also apparent on the grain 
scale, too small to be seen in this photograph. 
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this case vertical), while the stresses in the orthogonal 
directions are zero. In the laboratory, this is the axial 
strain, in response to axial stress, on a long, thin cylinder 
with free sides. 
 
By contrast, the parameter M, related to the P-wave 
velocity via (1b), is the elastic parameter which governs 
the strain in the direction of the applied stress (in this 
case vertical), while the strains in the orthogonal 
directions are zero. In the laboratory, this is the axial 
strain, in response to axial stress, on a cylinder with 
confined sides. 
 
Young’s modulus does not appear in the expression for 
the elastic velocities (1ab) in a natural way, but it does 
appear in the elastic compliance tensor (cf., e.g. 
Thomsen, 2010), which may be displayed, for isotropic 
media, as the symmetric matrix (2), in which only the 
non-zero components are shown.  The indices of this 
matrix refer to various combinations of directions; many 
of these components are identical since, in isotropy, many 
of these direction-combinations are equivalent. 
 

 

1

1

1

1

1

1

iso

E E E

E E

E
S

ν ν

ν

µ

µ

µ

− −

−

=   (2) 

 
For a polar anisotropic medium with symmetry axis 
vertical, the compliance tensor may be displayed as 
equation (3).  Here one sees the horizontal and vertical 
Young’s moduli E11 and E33; the 22 component is also 
named with E11 , since the 1-direction and the 2-direction 
are equivalent, for this symmetry. One also sees 
directional shear moduli µ13 and µ12, and directional 
Poisson’s ratios ν12 and ν13. There are only 5 
independent parameters, since 12 11 12/ 2 1Eν µ= − . 
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However, a description of the elastic velocities of polar 
anisotropic media requires the use of the elastic stiffness 
tensor, which is the mathematical inverse of the elastic 
compliance tensor (3).  The stiffness tensor 
corresponding to (3) may be displayed as the matrix: 
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In equation (4), the 33 component is labelled 2
0PVρ ; this 

is density times the vertical P-velocity squared. By 
convention we use the subscript 0 (to indicate zero angle 
of incidence) instead of 3 (to indicate the 3-axis). 
Similarly, the 11 and 22 components, controlling the 

horizontal P-velocity, are labelled 2
90PVρ . The 44 and 55 

components, controlling the vertical S-velocity, polarized 

horizontally, are labelled 2
0SVρ .  And the 66 component, 

controlling the horizontal S-velocity, polarized 

horizontally, is labelled 2
9090SVρ .   

 
There are two different Lame parameters, shown as the 
12, 13, and 23 components. The 12 component is not 
independent of the others, but is given by the expression: 
 
 2 2

12 90 90902P SV Vλ ρ ρ= −                                   (5) 

 
So there are five independent stiffnesses; the form of the 
stiffness matrix (4) is very similar to that of compliance 
matrix (3). 
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It is conventional to express the anisotropy which is 
evident in equation (4) via three parameters: δ, ε, and γ , 
defined implicitly by: 
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Then the five independent parameters maybe taken as 
VP0, VS0 , δ, ε, and γ . If the anisotropy is weak, this 
choice of parameters leads to simple expressions for the 
elastic velocity, as functions of the polar angle (Thomsen, 
1986). Hence, they are familiar to many exploration 
geophysicists, so it is useful to express the compliance 
anisotropy, which is evident in equation (3), in these 
same terms. 
 
Conventional sonic logs only measure VP0 and VS0; they 
do not measure δ, ε, or γ.  So, if we want to estimate 
Young’s modulus from such data, one option is to ignore 
the anisotropy, and define apparent isotropic parameters 
(with subscript 0) using the vertical velocities VP0 and 
VS0 (cf. equation (1) : 
 

2
0 0

2
0 0 0 0

0 0 0

0 0 0
0

0 0

0 0
0

0 0

(7 )
4 (7 )
3

2 (7 )
(3 4 )

(7 )
( )

2
(7 )

2( )

S

P

V a

V M K b

M c
M

E d
M

M
e

M

ρ µ

ρ µ

λ µ
µ µ

µ
µ

ν
µ

≡

= = +

≡ −
−

≡
−

−
≡

−

 

 
So, now we can pose the question: what is the difference 
between the true vertical Young’s modulus E33 (in 
equation (3)), and the apparent Young’s modulus E0, 
calculated from the vertical velocities using the isotropic 
equation (7d) ?  Closed-form expressions exist (e.g. Nye, 
1985) for the stiffness components, in terms of the 
compliance components, but they are non-linear and 
resistant to intuitive understanding.   
 
However, in the common geophysical case that the 
anisotropy is weak, i.e. that the parameters, δ, ε, and γ 
are all <<1, the expressions simplify (Thomsen, 2010). In 
the notation used here, the apparent vertical Young’s 
modulus E0 is just the true vertical Young’s modulus E33 
with a correction depending linearly on the anisotropy: 
 

2
0 33 0 0 0 0 04 2 8E E Mν ν ε δ ν µ γ = − − +            (8a) 

 
Perhaps surprisingly, the difference depends upon all 
three anisotropy parameters.  The correction cannot be 
measured using log data; its magnitude may be either 
positive or negative, and may be significant or not, 
depending on these .anisotropy parameters. 

 
The apparent Young’s modulus E0 is also related to the 
true horizontal Young’s modulus E11 by the expression 
(Thomsen, 2010): 
 

 ( )0 11 0 0 0 0

0 0 0

(1 ) 1 2 2

8 (1 )

E E M ν ν ε ν δ

ν ν µ γ

 = − − − − 
− −

              (8b) 

 
It is often not clear whether it is the vertical or horizontal 
Young’s modulus which is implied by those who use 
isotropic parameters to describe anisotropic rocks; in 
either case an error is incurred (cf. equations (8ab)). 
 
A similar analysis applies to the apparent Lame 
parameter λ0 (7c). Two Lame-type parameters appear in 
equation (4): λ12 (5) and λ13 (6c). The relations between 
these and λ0 are derived, from (5, 6), as: 
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and, from (6,7), as 
 

2
0 13 0PVλ λ ρ δ= −                                                 (9b) 

 
It is often not clear which anisotropic Lame parameter is 
implied by those who use isotropic parameters to describe 
anisotropic rocks; in either case an error is incurred (cf. 
equations (9ab)). 
 
A similar analysis applies to the apparent Poisson ratio ν0 
(7e). Two Poisson ratios appear in equation (3): ν12  and 
ν13. The relations between these and ν0 are derived, from 
(3, 6), as: 
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It is often not clear which anisotropic Poisson’s ratio is 
implied by those who use isotropic parameters to describe 
anisotropic rocks; in either case an error is incurred (cf. 
equations (10ab)). 
 
Apparent isotropic parameters from surface 
seismic moveout 
 
In this section, we assume that the underlying data come 
from seismic moveout ( VPNMO and VSNMO ), as 
determined for a particular depth or time interval in the 
subsurface. Two shear modes, SH (polarized 
horizontally) and SV (polarized perpendicular to SH), 
propagate, with different velocities, in polar anisotropic 
formations. The short-spread moveout velocities are 
related to the corresponding vertical velocities by 
(Thomsen, 1986): 
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where  δ, ε, and γ  are the same anisotropy parameters 
introduced in equation (6).  The results of the previous 
section apply, with the additional corrections implied by 
equations (11abc). 
 
Apparent isotropic parameters from surface 
seismic reflectivity 
 
In this section, we assume that the underlying data come 
from reflection amplitudes. The plane-wave P-reflection 
coefficient for a horizontal planar interface between polar 
anisotropic formations, linearized for small elastic 
contrasts, is (Rueger, 1998): 
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where θw is the angle between the vertical and the 
wavefront normal, and the coefficients are: 
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This differs from the isotropic AVO equation principally 
through the explicit inclusion, in equations (13bc), of the 
contrasts (across the reflector) in the anisotropy 
parameters, ∆δ and ∆ε, of the formations.   
 
The remarkable thing about these equations is that, 
although the anisotropic contributions here are small 
(<<1), all of the other terms are also similarly small (this 
is a fundamental assumption of the linearization process).  
There is no leading term which is not small, as in 
equations (11).  Hence, the neglect of the anisotropic 
terms may lead to large percentage errors, +/- 100% or 
more, even including reversal of algebraic sign. 
 
Usually, this issue is addressed by normalizing the 
received seismic amplitudes in Common Depth Point 
reflection gathers, near a wellbore, to the reflection 
coefficient calculated from sonic and density logs in the 
well.  Of course, this calculated reflection coefficient is 
necessarily isotropic, e.g. using equations (12, 13) with 
the anisotropy contributions assumed zero.  This 
produces estimates of vertical elastic properties, reducing 

the problem (near the wellbore) to that of discussed 
above (equations (1-10)), except band-limited in 
resolution. 
 
Additional difficulty arises if this same normalization is 
extended to other CDP gathers centered away from the 
wellbore. The problem is that the normalization is a 
multiplicative correction, whereas equation (13) shows 
that a proper correction (to find vertical elastic properties) 
is additive, not multiplicative.  A positive multiplicative 
normalization cannot correct for a change of algebraic 
sign, whereas an additive correction can do this, on those 
occasions where it is required by the magnitude of the 
anisotropic corrections. 
 
Furthermore, an adequate method of subsurface 
characterization should provide estimates of the missing 
anisotropy parameters, with the same spatial resolution.  
Currently, there is no accepted method for accomplishing 
this.    
 
Conclusions 
 
This work attempts to understand how apparent isotropic 
elastic parameters, derived from various types of data on 
anisotropic formations, are related to the true anisotropic 
elastic parameters of those formations.  The relationship 
depends on the type of data that forms the basis for the 
apparent isotropic parameters, and the symmetry of the 
anisotropic formation.  For clarity and specificity, the 
present analysis is restricted to the case of weak polar 
anisotropy; the present methods can be extended directly 
to lower symmetries. 
 
In all cases, the apparent isotropic parameters differ from 
the true anisotropic parameters because of the anisotropy. 
These differences are expressed here in closed form, in 
terms of the anisotropic parameters δ, ε, and γ , which 
are familiar from the seismic context.  The anisotropic 
corrections may lead to significant differences in 
conclusions, depending on the context.  
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